On-line Algorithms

• A Santa Cruz specialty
• For more info, see Avrim Blum’s “On-line algorithms in Machine Learning” and Manfred Warmuth’s web page,
• Rich and interesting Theory
• Learn as you go -- lifelong learning
• No training examples, all testing

On-line model:

• Learning is a sequence of trials
• On each trial:
 – Learner gets a (new) instance \(x \)
 – Learner predicts \(y' \)
 – Learner gets label \(y \) and earns loss \(L(y, y') \)
• Common losses: (expected) number of mistakes, cumulative square loss, log loss: \(\log(1/p_y) \)
• Usually want to minimize worst case loss (relative to a comparator)
• Also called prediction of individual sequences

On-line algorithm successes

• Calendar completion (Blum 1997)
• Disk Spin-down (Helmbold et.al. 2000)
• Adaptively choosing caching strategies (Gramacy et.al 2002)
• Classifying patents (Koster et.al. 2002)
boolean disjunctions (Rivest)

- Each x has n boolean attributes x_1, \ldots, x_n
- Learn e.g. $x_2 \lor \neg x_5 \lor x_6$ (no noise)
- **Algorithm:**
 - Init: $S = \text{all } 2n$ literals (attributes and negations)
 - Predict: true iff any literals in S true
 - Update: if pred true but x labeled false:
 - Remove all literals satisfied by x from S
- **Claim:** no false positive predictions:
 - S is a superset of target disjunction
- At most $n+1$ mistakes: $|S|$ is $2n, n, n-1, \ldots, 0$

Simple on-line task

- Given a finite concept class C (like intervals of $\{0, 1, 2, \ldots, k\}$)
- Predict nearly as well as best interval
- Assume some interval perfect
- **Halving algorithm:**
 - predict with majority of the *version space*
 - Each mistake halves version space
 - Number of mistakes bounded by $\lg(|C|)$

Randomized Halving Algorithm (Gibb’s Algorithm)

- This algorithm predicts randomly based on how the version space is predicts
- Number of mistakes depends on outcome of randomization
- Expected number of mistakes at most: $\ln(|C|)$
- Also bounds *Absolute loss*
- Analysis: …

Gibbs Analysis

- Let v be the size of the version space, $n=|C|$ consider potential $= \lg(v)$, initially $\lg(n)$, drops to $\lg(1)=0$
- Consider 1 trial, let rv of version space be correct, r is in $(0,1]$
 - Probability of mistake is $(1-r)$
 - New potential $= \lg(rv) = \lg(v) - \lg(1/r)$
 - Expected mistakes per unit drop in potential is: $(1-r)/\lg(1/r)$ maximum of $\ln(2)$ as $r \to 1$
- Expected total loss $\leq \ln(2) \lg(n) = \ln(n)$
Better Randomized Prediction

Adversary chooses \((r, 1-r)\) split of \(v\)
Alg chooses \(p\) of predicting with \(r\)-side

Adversary chooses outcome with \(r\)-side
Expected Loss is \(1-p\) or \(p\);
Progress is \(\log(1/r)\) or \(\log(1/(1-r))\)

\[E \cdot \text{loss/progress} \leq \max\left(\frac{1-p}{\log(1/r)}, \frac{p}{\log(1/(1-r))} \right) \]

Set \(\text{eq} \) & solve: \[p = \frac{\log(1/(1-r))}{\log(1/r) + \log(1/(1-r))} \]

\[E \cdot \text{loss/progress} \leq \frac{1}{\log(1/(1-r))} \leq 1/2 \]

Winnow algorithm (Littlestone 88)

- Simple algorithm for learning linearly separable functions and \([0,1]\)-valued attributes
- Robust against small amounts of noise
- Keeps weight vector \(w\) like perceptron, bounds depend on “gap”
- Uses multiplicative rather than additive updates -- has promotion/demotion steps
- Very good with many irrelevant features
- Used with some success for text classification

Winnow1 alg:

- Pick update factor \(a>1\), and threshold
- Init. weights \(w_i=1\) for each variable/literal
- Predict 1 (true) if \(w \cdot x > \text{threshold}\)
- False pos. eliminate: set \(w_i = 0\) if \(x_i=1\)
- False neg. promote: set \(w_i = aw_i\) if \(x_i=1\)
- Mistake Bound (k-disjunctions):
 \[ak(1+\log f) + n/\text{threshold} \]
- Can set \(a=2\), threshold\(=n/2\), getting \(2k(\log n) + 2\)
 - Halving alg bound: \(\log(n) \text{ choose } k\) = \(k \log n - k \log k\)

Halving alg knows \(k\), Easy implementation?
Winnow2 alg:
r-of-k threshold funct’s, (credit assignment)

- Pick update factor $a>1$ and threshold
- Init. weights $w_i=1$ for each variable/literal
- Predict 1 (true) if $w \cdot x >$ threshold
- False pos. demote: set $w_i = w_i / a$ if $x_i = 1$
- False neg. promote: set $w_i = aw_i$ if $x_i = 0$

Bound for *r-of-k* threshold functions*:
$$8r^2 + 5k + 14kr \ln n$$
Can tolerate some noise

*: by setting $a = 1 + 1/2r$; threshold = n

Expert Setting (LW 94, CFHHSW 97)

- Learner competes against a class of other predictors (the experts) could be concepts
- No expert perfect, but want to do almost as well as best expert in class
- Learner gets the experts’ predictions, not instances
- Worst case setting - experts can conspire to mislead algorithm

Example: weather prediction

<table>
<thead>
<tr>
<th>Day</th>
<th>KGO</th>
<th>KCBS</th>
<th>KNBR</th>
<th>Mercury</th>
<th>Chronical</th>
<th>Weather</th>
<th>Predict</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rain</td>
<td>Sun</td>
<td>Rain</td>
<td>Rain</td>
<td>Rain</td>
<td>Sun</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

Example: weather prediction

<table>
<thead>
<tr>
<th>Day</th>
<th>KGO</th>
<th>KCBS</th>
<th>KNBR</th>
<th>Mercury</th>
<th>Chronical</th>
<th>Weather</th>
<th>Predict</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rain</td>
<td>Sun</td>
<td>Rain</td>
<td>Rain</td>
<td>Rain</td>
<td>Sun</td>
<td>Rain</td>
<td>sun</td>
</tr>
</tbody>
</table>
Example: weather prediction

<table>
<thead>
<tr>
<th>Day</th>
<th>KGO</th>
<th>KCBS</th>
<th>KNBR</th>
<th>Mercury</th>
<th>Chronical</th>
<th>Weather</th>
<th>Pred</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rain</td>
<td>Sun</td>
<td>Rain</td>
<td>Rain</td>
<td>Rain</td>
<td>Sun</td>
<td>Rain</td>
<td>Rain</td>
</tr>
<tr>
<td>2</td>
<td>Rain</td>
<td>Sun</td>
<td>Sun</td>
<td>Sun</td>
<td>Rain</td>
<td>Sun</td>
<td>Rain</td>
<td>Sun</td>
</tr>
<tr>
<td>3</td>
<td>Rain</td>
<td>Rain</td>
<td>Rain</td>
<td>Rain</td>
<td>Sun</td>
<td>Sun</td>
<td>Sun</td>
<td>Rain</td>
</tr>
</tbody>
</table>

Expert Setting (cont)

- Algorithms must quickly find good expert, but must also hedge bets
- Competitive bounds in terms of best expert’s loss - if all expert’s are bad, then the algorithm will be too
- Worst case bounds often have form
 \[L_{\text{alg}} < L_{\text{best}} + O(\log(N) + (\log(N) L_{\text{best}})^{1/2}) \]
 (here N=# of experts; \(L_{\text{alg}} \)=Loss of algorithm, \(L_{\text{best}} \)=loss of best expert)

WM alg:

- Each of \(n \) Experts \(E_i \) predict 0 or 1
- Weight \(w_i \) of \(E_i \) starts at 1, slashed by \(b < 1 \) each time \(E_i \) makes mistake (can rescale \(w \)'s)
- Total weight \(W = \sum w_i \)
- On master mistake, new \(W \leq (\text{old } W) (1+b)/2 \)
- If \(m \) master mistakes, \(W \leq n \left[(1+b)/2 \right]^m \)
- If some \(E_i \) makes \(k \) mistakes, \(w_i = b^k < W \)
- So \(b^k < n \left[(1+b)/2 \right]^m \), solve for \(m \) ...

\[
m < \frac{\log(n + k \log(1/b))}{\log(1+b)}
\]

<table>
<thead>
<tr>
<th>b</th>
<th>bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>1.4 (\log n + 2.95 k)</td>
</tr>
<tr>
<td>1/2</td>
<td>2.4 (\log n + 2.4 k)</td>
</tr>
<tr>
<td>7/8</td>
<td>10.7 (\log n + 2.07 k)</td>
</tr>
</tbody>
</table>

Better bounds with randomized predictions
Extensions:

- **Expert alg:** CFHHSW expert pred. in [0,1], loss/progress randomization, doubling trick(b)
- **Exponentiated Gradient algorithm** learns linear combinations of experts (WK '97)
- **One armed bandit problems** (Auer et al): partial feedback

Shifting experts (WH98, BW02)

- Competes against shifting sequences of experts - for example: broker A for boom times, broker B for bust times
- Consider weights normalized to sum to 1
- Problem: if new good expert’s wt ≈ 0, many mistakes for it to “catch up”
- Solution: “share” some of lost weight to all experts before renormalizing

Disk Spin-down

- Spin-down hard drive to save power, but spinning it up costs power
- If drive idle for a time-out duration then spin it down
- Want to learn good time-out durations
- Each “expert” is a fixed time-out duration
- Adaptive expert algorithm uses less energy than best time-out in hindsight (HLSS ’00)

Caching

- Many page replacement policies (LRU, LFU, etc.) which is best depends on workload
- Use all policies as experts
 - Must compute actions and losses by keeping meta data for each policy
 - Need to update cache when switching policies
- Switching policies to fit current workload gives good results (GWBA ’02)
On-Line Summary

- Model: Competitive On-line rather than batch;
 best shifting or linear combination of features/experts
- Data: whatever experts need
 - experts can be boolean or numeric
- Interpretable? Yes
- Missing values? (sleeping experts)
- Noise/outliers? Good -- depends on learning rate b
- Irrelevant features/experts? Pretty good
- Comp. efficiency? Good