Operational Semantics: Big-Step vs. Small-Step

- **Big-Step Operational Semantics:** $e \Downarrow n$
 - Judgment $e \Downarrow n$ means that e evaluates to n
 - In one, big step, all the way to a result
 - Hard to talk about commands that do not terminate.
 - There is no σ' such that $<c, \sigma> \Downarrow \sigma'$
 - But we do not have an explanation of how c runs or fails.
 - It does not give us a way to talk about intermediate states.
 - Thus we cannot say that on a parallel machine the execution of two commands is interleaved.

- **Small-Step Operational Semantics:** $e \rightarrow e'$
 - describe a single step in the evaluation
 - many steps may be needed to get a result
What is the relation \rightarrow defined by these rules?

<table>
<thead>
<tr>
<th>Expression</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n_1 + n_2 \rightarrow n$</td>
<td>$e_1 \rightarrow e_1'$</td>
</tr>
<tr>
<td>$e_1 + e_2 \rightarrow e_1' + e_2$</td>
<td>$e_2 \rightarrow e_2'$</td>
</tr>
<tr>
<td>$e_1 \rightarrow e_1'$</td>
<td>$n_1 + e_2 \rightarrow n_1 + e_2'$</td>
</tr>
<tr>
<td>$e_1 * e_2 \rightarrow e_1' * e_2$</td>
<td>$e_2 \rightarrow e_2'$</td>
</tr>
<tr>
<td>$n_1 * e_2 \rightarrow n_1 * e_2'$</td>
<td></td>
</tr>
</tbody>
</table>

n is the sum of n_1 and n_2

n is the product of n_1 and n_2
Small-Step Evaluation Rules

\[
\begin{align*}
n & \text{ is the sum of } n_1 \text{ and } n_2 \\
n_1 + n_2 & \rightarrow n \\
\hline
e_1 & \rightarrow e_1' \\
e_1 + e_2 & \rightarrow e_1' + e_2 \\
\hline
e_1 & \rightarrow e_1' \\
e_1 * e_2 & \rightarrow e_1' * e_2
\end{align*}
\]

\[
\begin{align*}
n & \text{ is the product of } n_1 \text{ and } n_2 \\
n_1 * n_2 & \rightarrow n \\
\hline
e_2 & \rightarrow e_2' \\
n_1 + e_2 & \rightarrow n_1 + e_2' \\
\hline
e_2 & \rightarrow e_2' \\
n_1 * e_2 & \rightarrow n_1 * e_2'
\end{align*}
\]

- Fixed evaluation order.
- Example: \((3 + 4) + 5 \rightarrow 7 + 5 \rightarrow 12\)
Contextual Semantics

- Contextual semantics is a small-step semantics that is specified in two parts:

 - What evaluation rules to apply?
 - What is an atomic reduction step?

- Where can we apply them?
 - Where should we apply the next atomic reduction step?
Small-Step Operational Semantics for IMP

• Each execution step is a rewrite of the program.
• We will define a relation \(<c, \sigma> \rightarrow <c', \sigma'> \)
 - \(c' \) is obtained from \(c \) through an atomic rewrite step.
 - E.g.: \(<x := 2+8, \sigma> \rightarrow <x := 10, \sigma> \rightarrow <\text{skip}, \sigma[x:=10]> \)
 - Evaluation terminates when the program has been rewritten to a terminal program (one from which we cannot make further progress).
 - For IMP the terminal command is “skip”.
 - As long as the command is not “skip” we can make progress.
 - Some commands never reduce to skip (e.g., while true do skip).
What is an Atomic Reduction?

• We need to define:
 - What constitutes an atomic reduction step?
 • Granularity is a choice of the semantics designer.
 • E.g., choice between an addition of arbitrary integers, or an addition of 32-bit integers.
 - How to select the next reduction step, when several are possible?
 • This is the order of evaluation issue.
Redexes

• A redex is a syntactic expression or command that can be reduced (transformed) in one atomic step.
• For brevity, we mix expression and command redexes (and also omit some redexes and contexts).
• Redexes are defined by a grammar:

 \[r ::= \]

 \[x \]

 \[| n_1 + n_2 \]

 \[| x := n \]

 \[| \text{skip;} c \]

 \[| \text{if } \text{true then } c_1 \text{ else } c_2 \]

 \[| \text{if } \text{false then } c_1 \text{ else } c_2 \]

 \[| \text{while } b \text{ do } c \]

• Note that \((1 + 3) + 2\) is not a redex, but \(1 + 3\) is.
Local Reduction Rules for IMP

• One for each redex: \(<r, \sigma> \rightarrow <e, \sigma'>\)
 - This means that in state \(\sigma\), the redex \(r\) can be replaced in one step with the expression \(e\).

\(<x, \sigma> \rightarrow <\sigma(x), \sigma>\)
\(<n_1 + n_2, \sigma> \rightarrow <n, \sigma>\) \(\text{where } n = n_1 + n_2\)
\(<n_1 = n_2, \sigma> \rightarrow <\text{true}, \sigma>\) \(\text{if } n_1 = n_2\)
\(<x := n, \sigma> \rightarrow <\text{skip}, \sigma[x := n]>\)
\(<\text{skip}; c, \sigma> \rightarrow <c, \sigma>\)
\(<\text{if true then } c_1 \text{ else } c_2, \sigma> \rightarrow <c_1, \sigma>\)
\(<\text{if false then } c_1 \text{ else } c_2, \sigma> \rightarrow <c_2, \sigma>\)
\(<\text{while } b \text{ do } c, \sigma> \rightarrow <\text{if } b \text{ then } c; \text{ while } b \text{ do } c \text{ else } \text{skip}, \sigma>\)
Review

- A redex is something that can be reduced in one step
 - E.g. $2+8$
- **Local reduction rules** reduce these redexes
 - E.g. $<2+8, \sigma> \rightarrow <10, \sigma>$

- **Next**: global reduction rules
- Consider
 - $<x := 1+(2+8), \sigma>$
 - $<\text{while false do } x := 1+(2+8), \sigma>$
- Should we also reduce $2+8$ in these cases?
Contexts

• A context is an expression or command with exactly one marker “•”
 - The marker is sometimes called a hole.
 - H[e] is obtained from H by replacing the marker • with e

• Examples
 - x := 1+•
 • Fill context H with 2+8 to yield H[2+8] = x := 1+(2+8)
 • Or fill context with 10 to yield H[10] = x := 1+10
 - while false do x := 1+•
 • Fill with 2+8 to yield H[2+8] = while false do x := 1+(2+8)
 - while false do •
 - •
Evaluation Contexts

- An **evaluation context** is a context in which the marker indicates the next place for evaluation.
 - identifies the next redex, a bit like a program counter

 \[
 H ::= \bullet \\
 \mid H + e \\
 \mid n + H \\
 \mid x := H \\
 \mid \text{if } H \text{ then } c_1 \text{ else } c_2 \\
 \mid H; c
 \]
Evaluation Contexts

- An evaluation context is a context in which the marker indicates the next place for evaluation.
 - identifies the next redex, a bit like a program counter
 \[H ::= \]
 \[| H + e \]
 \[| n + H \]
 \[| x := H \]
 \[| \text{if } H \text{ then } c_1 \text{ else } c_2 \]
 \[| H; c \]

- Examples
 - \(x := 1+\cdot \)
 - \(\cdot \)
 - NOT: while false do \(x := 1+\cdot \)
 - NOT: if \(b \) then \(c \) else \(\cdot \)
Contexts: Notes

• Evaluation contexts say how to find the next redex:
 - Consider $e_1 + e_2$ and its decomposition as $H[r]$.
 - If e_1 is n_1 and e_2 is n_2
 • then $H = \cdot$ and $r = n_1 + n_2$.
 - If e_1 is n_1 and e_2 is not n_2
 • then $H = n_1 + H_2$ and $e_2 = H_2[r]$.
 - If e_1 is not n_1
 • then $H = H_1 + e_2$ and $e_1 = H_1[r]$.
 - In the last two cases the decomposition is done recursively.
 - In each case the solution is unique.
The Global Reduction Rule

- **General idea of the contextual semantics:**
 - Decompose the current expression into
 - the next redex r
 - and an evaluation context H (the remaining program).
 - Reduce the redex “r” to some other expression “e”.
 - Put “e” back into the original context, yielding H[e].

- **Formalized as a small step rule:**

 If \(<r, \sigma> \rightarrow <e, \sigma'>\) then \(<H[r], \sigma> \rightarrow <H[e], \sigma'>\)
The Global Reduction Rule: Example

• Consider the command \(x := 1+(2+8) \)
• Split into an evaluation context \(H \) and a redex \(r \)
• Get
 \[
 \begin{align*}
 H &= x := 1+ \\
 r &= 2+8 \\
 H[r] &= x := 1+(2+8) \quad \text{(original command)}
 \end{align*}
 \]
• Have
 \[
 \begin{align*}
 &\langle 2+8, \sigma \rangle \rightarrow \langle 10, \sigma \rangle \quad \text{(local reduction rule)}
 \end{align*}
 \]
• Define global reduction
 \[
 \begin{align*}
 &\langle H[2+8], \sigma \rangle \rightarrow \langle H[10], \sigma \rangle \\
 &\langle x := 1+(2+8), \sigma \rangle \rightarrow \langle x := 1+10, \sigma \rangle \\
 &\text{or, equivalently}
 \end{align*}
 \]
Contextual Semantics: Example

- Consider the small-step evaluation of \(x := 1; x := x + 1 \) in the initial state \([x := 0]\)

<table>
<thead>
<tr>
<th>State</th>
<th>Context</th>
<th>Redex</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<x := 1; x := x + 1, [x := 0])></td>
<td>•; (x := x + 1)</td>
<td>(x := 1)</td>
</tr>
<tr>
<td>(<\text{skip}; x := x + 1, [x := 1])></td>
<td>•</td>
<td>(\text{skip}; x := x + 1)</td>
</tr>
<tr>
<td>(<x := x + 1, [x := 1])></td>
<td>(x := \bullet + 1)</td>
<td>(x)</td>
</tr>
<tr>
<td>(<x := 1 + 1, [x := 1])></td>
<td>(x := \bullet)</td>
<td>(1 + 1)</td>
</tr>
<tr>
<td>(<x := 2, [x := 1])></td>
<td>•</td>
<td>(x := 2)</td>
</tr>
<tr>
<td>(<\text{skip}, [x := 2])></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Normal vs Short-Circuit Boolean Operators

• What if we want normal evaluation of \land?
 - Define the following contexts, redexes, and local rules:

 $H ::= \ldots | H \land b_2 | p_1 \land H$

 $r ::= \ldots | p_1 \land p_2$

 $\langle p_1 \land p_2, \sigma \rangle \rightarrow \langle p, \sigma \rangle \quad$ where $p = p_1 \land p_2$
Normal vs Short-Circuit Boolean Operators

• What if we want normal evaluation of \land?
 - Define the following contexts, redexes, and local rules:
 \[
 H ::= \ldots | H \land b_2 | p_1 \land H \\
 r ::= \ldots | p_1 \land p_2 \\
 \langle p_1 \land p_2, \sigma \rangle \rightarrow \langle p, \sigma \rangle \quad \text{where } p = p_1 \land p_2
 \]

• What if we want short-circuit evaluation of \land?
 - Define the following contexts, redexes, and local rules:
 \[
 H ::= \ldots | H \land b_2 \\
 r ::= \ldots | \text{true} \land b_2 | \text{false} \land b_2 \\
 \langle \text{true} \land b_2, \sigma \rangle \rightarrow \langle b_2, \sigma \rangle \\
 \langle \text{false} \land b_2, \sigma \rangle \rightarrow \langle \text{false}, \sigma \rangle
 \]
 - The local reduction kicks in before b_2 is evaluated.
Contextual Semantics: Notes

- One can think of the • as representing the program counter.
- The advancement rules for • are not trivial.
 - At each step the entire command is decomposed.
 - This makes contextual semantics inefficient to implement directly.

- The major advantage of contextual semantics is that it allows a mix of local and global reduction rules.
 - For IMP we have only local reduction rules: only the redex is reduced.
 - Sometimes it is useful to work on the context too.
Some Further Topics

• Treatment of errors in operational semantics
 - with an explicit “error” result,
 as in \((3/0) \rightarrow \text{error}\),
 - with an “error” expression,
 as in \((3 + \text{error})\),
 - with “stuck” computations,
 so \((3/0) \rightarrow r\) for no \(r\).

• Treatment of overflow (see homework 2)
Contextual Semantics: Notes

• For example: \(c = c_1; c_2 \)
 - either \(c_1 = \) skip and then \(c = H[skip; c_2] \) with \(H = \bullet \)
 - or \(c_1 \neq \) skip and then \(c_1 = H[r] \);
 so \(c = c_1; c_2 = H[r]; c_2 = H'[r] \) where \(H' = H; c_2 \)

• For example: \(c = \text{if} \ b \ \text{then} \ c_1 \ \text{else} \ c_2 \)
 - either \(b = \) true or \(b = \) false and then \(c = H[r] \) with \(H = \bullet \)
 - or \(b \) is not a value and \(b = H[r] \);
 so \(c = H'[r] \) where \(H' = \text{if} \ H \ \text{then} \ c_1 \ \text{else} \ c_2 \)

• Decomposition theorem: If \(c \) is not “skip” then there exist unique \(H \) and \(r \) such that \(c \) is \(H[r] \).
 - \(\Rightarrow \) Progress and determinism.
Summary of Operational Semantics

• Precise specification of dynamic semantics:
 - order of evaluation (or that it doesn’t matter)
 - error conditions (sometimes implicitly, by rule applicability)
• Simple and abstract (cf. implementations)
 - no low-level details such as stack and memory management, data layout, etc.
• Often not compositional (as for while)
• Basis for some proofs about languages
• Basis for some reasoning about particular programs
• Point of reference for other semantics