CMPS203 Lecture 3

Computer Science 203
Programming Languages
Fall 2004 - Lecture 3

Cormac Flanagan
University of California, Santa Cruz

What is the relation \(\rightarrow \) defined by these rules?

\[
\begin{align*}
n & \text{ is the sum of } n_1 \text{ and } n_2 \\
& n_1 + n_2 \rightarrow n \\
e_1 & \rightarrow e_1' \\
e_1 + e_2 & \rightarrow e_1' + e_2 \\
e_1 & \rightarrow e_1' \\
e_1 * e_2 & \rightarrow e_1' * e_2 \\
\end{align*}
\]

\[
\begin{align*}
n & \text{ is the product of } n_1 \text{ and } n_2 \\
n_1 * n_2 & \rightarrow n \\
e_1 & \rightarrow e_1' \\
e_2 & \rightarrow e_2' \\
\end{align*}
\]

Small-Step Evaluation Rules

- Fixed evaluation order.
- Example: \((3 + 4) + 5 \rightarrow 7 + 5 \rightarrow 12\)

An Imperative Language: IMP

syntax and operational semantics

a little more interesting

IMP Syntactic Entities

- int\quad \text{integer literals}
 - n
- bool\quad \text{booleans}
 - p \in \{\text{true, false}\}
- L\quad \text{locations (assignable variables)}
 - x, y, ...
- Aexp\quad \text{arithmetic expressions}
 - e
- Bexp\quad \text{boolean expressions}
 - b
- Comm\quad \text{commands}
 - c

Abstract Syntax (Aexp)

- For arithmetic expressions (Aexp)
 \[
 e ::= \quad n \quad \text{for } n \in \mathbb{Z} \\
| x \quad \text{for } x \in L \\
| e_1 + e_2 \quad \text{for } e_1, e_2 \in Aexp \\
| e_1 - e_2 \quad \text{for } e_1, e_2 \in Aexp \\
| e_1 * e_2 \quad \text{for } e_1, e_2 \in Aexp
 \]

- Notes:
 - Variables are not declared.
 - All variables have integer type.
 - There are no side-effects.
Abstract Syntax (Bexp)

- For boolean expressions (Bexp)
 \[b ::= \begin{align*}
 & \text{true} \\
 & \text{false} \\
 & e_1 = e_2 \quad \text{for } e_1, e_2 \in Aexp \\
 & e_1 \leq e_2 \quad \text{for } e_1, e_2 \in Aexp \\
 & \neg b \quad \text{for } b \in Bexp \\
 & b_1 \land b_2 \quad \text{for } b_1, b_2 \in Bexp \\
 & b_1 \lor b_2 \quad \text{for } b_1, b_2 \in Bexp
 \end{align*} \]

Abstract Syntax (Comm)

- For commands (Comm)
 \[c ::= \begin{align*}
 & \text{skip} \\
 & x := e \quad \text{for } x \in L \text{ and } e \in Aexp \\
 & c_1 ; c_2 \quad \text{for } c_1, c_2 \in \text{Comm} \\
 & \text{if } b \text{ then } c_1 \text{ else } c_2 \quad \text{for } c_1, c_2 \in \text{Comm \ and } b \in \text{Bexp} \\
 & \text{while } b \text{ do } c \quad \text{for } c \in \text{Comm \ and } b \in \text{Bexp}
 \end{align*} \]

Notes:
- The typing rules have been embedded in the syntax definition.
- Other checks may not be context-free and need to be specified separately (e.g., all variables are declared).
- Commands contain all the side-effects in the language.
- (Missing: pointers, function calls, ….)

Semantics of IMP

- The meaning of IMP expressions depends on the values of variables.
- A state \(\sigma \) is a function from \(L \) to \(Z \)
 - Represents the value of variables at a given moment
 - The set of all states is \(\Sigma = L \rightarrow Z \).

Evaluation Rules (for Aexp)

\[
\begin{align*}
& <n, \sigma> \cup n \\
& <x, \sigma> \cup \alpha(x) \\
& <e_1 + e_2, \sigma> \cup n_1 + n_2 \\
& <e_1 - e_2, \sigma> \cup n_1 - n_2 \\
& <e_1 \ast e_2, \sigma> \cup n_1 \ast n_2 \\
& <e_1 \land e_2, \sigma> \cup n_1 \land n_2 \\
& <e_1 \lor e_2, \sigma> \cup n_1 \lor n_2 \\
& <e_1 \leq e_2, \sigma> \cup n_1 \leq n_2 \\
& <e_1 = e_2, \sigma> \cup n_1 = n_2
\end{align*}
\]

Evaluation Rules (for Bexp)

\[
\begin{align*}
& <\text{true}, \sigma> \cup \text{true} \\
& <\text{false}, \sigma> \cup \text{false} \\
& <e_1, \sigma> \cup n_1 \\
& <e_2, \sigma> \cup n_2 \\
& <e_1 \leq e_2, \sigma> \cup n_1 \leq n_2 \\
& <e_1 = e_2, \sigma> \cup n_1 = n_2 \\
& <b_1 \land b_2, \sigma> \cup \text{false} \\
& <b_1 \lor b_2, \sigma> \cup \text{false} \\
& <b_1, \sigma> \cup \text{true} \\
& <b_1 \land b_2, \sigma> \cup \text{true} \\
& <b_1 \lor b_2, \sigma> \cup \text{true}
\end{align*}
\]

Operational Semantics of IMP

- Evaluation judgment for expressions
 - A ternary relation: on an expression, a state, and a value.
 - We write: \(<e, \sigma> \downarrow n \)
 - The evaluation of expressions does not have side-effects, so no resulting state on the right
 - In this case we can also view this judgment as a function of two arguments (written to the left of \(\downarrow \))

- Evaluation judgement for commands
 - A ternary relation: on an expression, a state, and a new state.
 - Evaluation of a command has side effects but no direct result
 - The "result" of a Comm is a new state: \(<c, \sigma> \downarrow \sigma' \)
 - The evaluation of a command might not terminate.
Evaluation Rules (for Comm)

\[
\begin{align*}
\langle e, \sigma \rangle \uparrow n & \quad \text{Def: } \sigma(x := n)(x) = n, \quad \sigma(x := n)(y) = \sigma(y) \\
\langle x := e, \sigma \rangle \uparrow \sigma[x := n] & \\
\langle \text{skip}, \sigma \rangle \uparrow \sigma & \\
\langle b, \sigma \rangle \uparrow \text{true} & \quad \langle c_1 ; c_2, \sigma \rangle \uparrow \sigma' \\
\langle b, \sigma \rangle \uparrow \text{false} & \quad \langle c_1, \sigma \rangle \uparrow \sigma' \\
\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \uparrow \sigma' & \\
\langle \text{while } b \text{ do } c, \sigma \rangle \uparrow \sigma' & \\
\langle b, \sigma \rangle \uparrow \text{true} & \quad \langle c_1, \sigma \rangle \uparrow \sigma' \\
\langle b, \sigma \rangle \uparrow \text{false} & \quad \langle c_2, \sigma \rangle \uparrow \sigma' \\
\end{align*}
\]

Evaluation of Commands: Notes

- The order of evaluation is important and explicit.
 - c_1 is evaluated before c_2 in $c_1; c_2$.
 - c_2 is not evaluated in "if true then c_1 else c_2".
 - c is not evaluated in "while false do c".
 - b is evaluated first in "if b then c_1 else c_2".
- The evaluation rules are not syntax-directed.
 - See the rule for while.
- The evaluation rules do suggest an interpreter.
- Conditional constructs have multiple evaluation rules, but only one can be applied at one time.

Disadvantages of Natural Operational Semantics

- Natural (or big-step) operational semantics has two disadvantages:
 - It is hard to talk about commands whose evaluation does not terminate.
 - There is no σ' such that $\langle c, \sigma \rangle \downarrow \sigma'$.
 - But we do not have an explanation of how c runs or fails.
 - It does not give us a way to talk about intermediate states:
 - Thus we cannot say that on a parallel machine the execution of two commands is interleaved.
- Small-step semantics overcomes these limitations.
 Execution is modeled as a sequence of states (possible infinite).

Contextual Semantics

- Contextual semantics is a small-step semantics where the atomic execution step is a rewrite of the program.
- We will define a relation $\langle c, \sigma \rightarrow c', \sigma' \rangle$:
 - c' is obtained from c through an atomic rewrite step.
 - E.g.: $\langle x := 2 + 8, \sigma \rightarrow x := 10, \sigma \rightarrow \text{skip}, \sigma[x := 10] \rangle$.
 - Evaluation terminates when the program has been rewritten to a terminal program (one from which we cannot make further progress).
- For IMP the terminal command is "skip".
- As long as the command is not "skip" we can make progress.
- Some commands never reduce to skip (e.g., while true do skip).

What is an Atomic Reduction?

- We need to define:
 - What constitutes an atomic reduction step?
 - Granularity is a choice of the semantics designer.
 - E.g., choice between an addition of arbitrary integers, or an addition of 32-bit integers.
 - How to select the next reduction step, when several are possible?
 - This is the order of evaluation issue.

Redexes

- A redex is a syntactic expression or command that can be reduced (transformed) in one atomic step.
- For brevity, we mix expression and command redexes (and also omit some redexes and contexts).
- Redexes are defined by a grammar:
 \[
 r ::= x \\
 | n_1 + n_2 \\
 | x := n \\
 | \text{skip} \\
 | \text{if } b \text{ then } c_1 \text{ else } c_2 \\
 | \text{while } b \text{ do } c \\
 \]
- Note that $(1 + 3) * 2$ is not a redex, but $1 + 3$ is.
Local Reduction Rules for IMP

- One for each redex: \(\langle r, \sigma \rangle \rightarrow \langle e, \sigma' \rangle \)
 - This means that in state \(\sigma \), the redex \(r \) can be replaced in one step with the expression \(e \).

<table>
<thead>
<tr>
<th>Redex Form</th>
<th>Rule</th>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle x, \sigma \rangle \rightarrow \langle \sigma(x), \sigma \rangle)</td>
<td></td>
<td></td>
<td>where (n = n_1 + n_2)</td>
</tr>
<tr>
<td>(\langle n_1 + n_2, \sigma \rangle \rightarrow \langle n, \sigma \rangle)</td>
<td></td>
<td></td>
<td>if (n_1 = n_2)</td>
</tr>
<tr>
<td>(\langle x := n, \sigma \rangle \rightarrow \langle \text{skip}, \sigma[x := n] \rangle)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\langle \text{skip}; c, \sigma \rangle \rightarrow \langle c, \sigma \rangle)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\langle \text{if} \ true \ \text{then} \ c_1 \ \text{else} \ c_2, \sigma \rangle \rightarrow \langle c_1, \sigma \rangle)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\langle \text{if} \ false \ \text{then} \ c_1 \ \text{else} \ c_2, \sigma \rangle \rightarrow \langle c_2, \sigma \rangle)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\langle \text{while} \ b \ \text{do} \ c, \sigma \rangle \rightarrow \langle \text{if} \ b \ \text{then} \ c \ \text{while} \ b \ \text{do} \ c \ \text{else} \ \text{skip}, \sigma \rangle)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cheating

- All work you turn in must be your own
- If you don’t know if something is allowed, please ask
- Any cheating will result in failure of the course and other standard measures

- You are encouraged to discuss course material and assignments with others
- You are not allowed do homeworks with others
- You may use any conversations, texts, or other material, as long as you cite your sources

Reading

- For Tuesday, read up on induction
- Winskel’s book: chapters 3 and 4
 - can read ahead on chapter 6 if you have time
- Also read a small proof by induction, by Faron Moller, available on the course web pages.
- Please read and use the class newsgroup:
 - ucsc.class.cmps203 on news server news.ucsc.edu