CMPS 201
Midterm 1 Review
Solutions to Selected Problems

1. Let $T(n)$ satisfy the recurrence $T(n) = aT(n/b) + f(n)$, where $a \geq 1$, $b > 1$ and $f(n)$ is a polynomial satisfying $\text{deg}(f) > \log_b(a)$. Prove that case (3) of the Master Theorem applies, and in particular, prove that the regularity condition necessarily holds.

Proof:
Let $d = \text{deg}(f)$ and replace $f(n)$ by the asymptotically equivalent function n^d. We compare the polynomials n^d and $n^\log_b(a)$. Let $\epsilon = d - \log_b(a)$, which is positive since $d > \log_b(a)$. Therefore $d = \log_b(a) + \epsilon$, and $n^d = \Omega(n^d) = \Omega(n^{\log_b(a)+\epsilon})$, verifying the first hypothesis of case (3).

Observe $d > \log_b(a) \Rightarrow b^d > a \Rightarrow a/b^d < 1$. Pick any c in the range $a/b^d \leq c < 1$. Then for any $n \geq 1$, we have $a(n/b)^d = (a/b^d)n^d \leq cn^d$, verifying the regularity condition. ■

2. The nth harmonic number is defined to be $H_n = \sum_{k=1}^{n} \left(\frac{1}{k} \right)$. Use induction to prove that

$$\sum_{k=1}^{n} H_k = (n + 1)H_n - n$$

for all $n \geq 1$. (Hint: Use the fact that $H_n = H_{n-1} + \frac{1}{n}$)

Proof:
I. If $n = 1$, then $H_1 = 1$ and $\sum_{k=1}^{1} H_k = 1 = 2 - 1 = (1 + 1) - 1 - 1 = (1 + 1)H_1 - 1$, so the base case is satisfied.

II. Let $n > 1$ be chosen arbitrarily, and assume $\sum_{k=1}^{n-1} H_k = ((n - 1) + 1)H_{n-1} - (n - 1)$. We must show that $\sum_{k=1}^{n} H_k = (n + 1)H_n - n$. We have

$$\sum_{k=1}^{n} H_k = \sum_{k=1}^{n-1} H_k + H_n$$

$$= ((n - 1) + 1)H_{n-1} - (n - 1) + H_n$$

by the induction hypothesis

$$= nH_{n-1} - n + 1 + H_n$$

$$= nH_n - nH_n + nH_{n-1} - n + 1 + H_n$$

$$= (n + 1)H_n - n + 1 - n(H_n - H_{n-1})$$

$$= (n + 1)H_n - n + 1 - n \left(\frac{1}{n} \right)$$

by the definition of H_n

$$= (n + 1)H_n - n,$$

as required. It follows that $\sum_{k=1}^{n} H_k = (n + 1)H_n - n$ for all $n \geq 1$. ■
3. Define the sequence S_n by the recurrence $S_n = (n - 1) + \frac{n-1}{n^2} \cdot \sum_{k=1}^{n-1} S_k$. Use induction to prove $S_n \leq 2n$ for all $n \geq 1$.

Proof:

I. Observe $S_1 = (1 - 1) + \frac{1-1}{1^2} \cdot (\text{empty sum}) = 0 \leq 2 = 2 \cdot 1$, establishing the base case.

II. Let $n > 1$, and assume for all k in the range $1 \leq k < n$ that $S_k \leq 2k$. We must show that $S_n \leq 2n$. We have

$$S_n = (n - 1) + \frac{n-1}{n^2} \cdot \sum_{k=1}^{n-1} S_k$$

$$\leq (n - 1) + \frac{n-1}{n^2} \cdot \sum_{k=1}^{n-1} 2k \quad \text{by the induction hypothesis}$$

$$= (n - 1) + \frac{(n-1)^2}{n}$$

$$= (n - 1) \left(1 + \frac{n-1}{n} \right)$$

$$= (n - 1) \left(1 + 1 - \frac{1}{n} \right)$$

$$= (n - 1) \left(2 - \frac{1}{n} \right)$$

$$= 2n - 2 - 1 + \frac{1}{n}$$

$$= 2n - 3 + \frac{1}{n}$$

$$\leq 2n \quad \text{since} \; n > 1 \Rightarrow \frac{1}{n} \leq 1 \Rightarrow -3 + \frac{1}{n} \leq 0$$

as required. It follows that $S_n \leq 2n$ for all $n \geq 1$. ■

4. The following sorting algorithm, called BadSort() is a modified version of StoogeSort() from the 2nd edition of CLRS, which seems to have been left out of the 3rd edition.

```
BadSort(A, p, r)  pre: p ≤ r
3. else
4.   return
5.   q = [(r - p + 1)/3]
6.   BadSort(A, p, r - q)
7.   BadSort(A, p + q, r)
8.   BadSort(A, p, r - q)
```

a. Use induction on the length \(m = r - p + 1 \) of \(A[p \cdots r] \) to prove the correctness of \(\text{BadSort}(\cdot) \).

Proof:

I. If \(m = 1 \), then \(p = r \) so the test on line (1) is false and that on line (3) is true, so the algorithm returns with no changes to the array. Indeed, an array of length 1 is already sorted and no changes are necessary. If \(m = 2 \), then \(p + 1 = r \). Lines (1) and (2) insure that \(A[p] \) and \(A[p + 1] \) are arranged in increasing order. The test on line (3) is true so the algorithm returns with no other action. The base cases are therefore satisfied.

II. Let \(m > 2 \), and assume that \(\text{BadSort}(\cdot) \) correctly sorts any subarray of length less than \(m \). We must show that if \(m = r - p + 1 \), then \(\text{BadSort}(A, p, r) \) correctly sorts \(A[p \cdots r] \). After placing \(A[p] \) and \(A[r] \) in increasing order, the test on line (3) will be false (since \(m > 2 \Rightarrow r - p + 1 > 2 \Rightarrow r > p + 1 \)) so lines (6)-(9) will be executed. Line (6) sets \(q = \lfloor m/3 \rfloor \), and since \(m \geq 3 \) we have \(q \geq 1 \). Therefore

\[
\text{length}(A[p \cdots (r - q)]) = r - q - p + 1 = m - q < m
\]

and

\[
\text{length}(A[(p + q) \cdots r]) = r - p - q + 1 = m - q < m.
\]

By our induction hypothesis, the effect of the recursive calls on lines (7)-(9) is to correctly sort the corresponding subarrays. It remains to show that this sequence of calls has the effect of sorting the subarray \(A[p \cdots r] \). To simplify the discussion, we define \(X, Y \) and \(Z \) to be the subarrays

\[
X = A[p \cdots (p + q - 1)] \quad \text{1st third}
\]

\[
Y = A[(p + q) \cdots (r - q)] \quad \text{2nd third}
\]

\[
Z = A[(r - q + 1) \cdots r] \quad \text{3rd third}
\]

After line (7) is executed, the subarray \(A[p \cdots (r - q)] = (X, Y) \) is sorted. Thus every element in \(X \) is less than or equal to every element in \(Y \), which we signify by writing \(X \leq Y \). After line (8) is executed, \(A[(p + q) \cdots r] = (Y, Z) \) is sorted, whence \(Y \leq Z \). Also \(X \leq Z \) since any element that was in \(X \) before the sort, and which belongs in \(Z \), was placed in \(Y \) by line (7), then placed in \(Z \) by line (8). In other words, all elements that ultimately belong in \(Z \) are placed there by the time (8) is executed. However \(X \leq Y \) may no longer be true at this point since some element that was originally in \(Z \), and is now in \(Y \), may be smaller than some element of \(X \). After line (9), we again have \(X \leq Y \), so the subarrays \(X, Y \) and \(Z \) are sorted and \(X \leq Y \leq Z \). Therefore \(A[p \cdots r] = (X, Y, Z) \) is now sorted, as required.

b. Write a recurrence relation for the number of array comparisons performed by \(\text{BadSort}(\cdot) \) on an array of length \(n \).

Solution:
At the top level of the recurrence, the sub-arrays have length \(n - q = n - \lfloor n/3 \rfloor = \lfloor 2n/3 \rfloor \). The (best, worst and average case) run time \(T(n) \) of \(\text{BadSort}(\cdot) \) therefore satisfies the recurrence

\[
T(n) = \begin{cases}
1 & 1 \leq n < 3 \\
3T(\lfloor 2n/3 \rfloor) + 1 & n \geq 3
\end{cases}
\]
c. Use the Master Theorem to find an asymptotic solution to this recurrence, and explain what is bad about BadSort().

Solution:
Simplifying the above recurrence for the Master Theorem gives \(T(n) = 3T \left(\frac{n}{3^{1/2}} \right) + 1 \). We compare \(1 = n^0 \) to \(n^{\log_{3/2}(3)} \). Observe \(3 > 1 \Rightarrow \log_{3/2}(3) > 0 \), so setting \(\epsilon = \log_{3/2}(3) \), we have \(1 = n^0 = O(n^0) = O(n^{\log_{3/2}(3)-\epsilon}) \). Case (1) yields \(T(n) = \Theta(n^{\log_{3/2}(3)}) \).

The runtime of most other sorting algorithms is no worse than \(\Theta(n^2) \). For instance MergeSort() and HeapSort() run in \(\Theta(n \log n) \) time, while InsertionSort() and QuickSort() run in time \(\Theta(n^2) \) (again worst case). But \(\log_{3/2}(3) = 2.7095 \ldots \), so BadSort() runs in \(\Theta(n^{2.7095\ldots}) \) time. This is considerably worse than any standard sorting algorithm, making BadSort() aptly named.

5. Simplify the recurrence for MergeSort() by assuming that \(n \) is an exact power of 2; \(n = 2^k \) for some integer \(k \geq 0 \).

\[
T(n) = \begin{cases}
0 & n = 1 \\
2T \left(\frac{n}{2} \right) + (n - 1) & n \geq 2, n = 2^k
\end{cases}
\]

Use the iteration method to find an exact solution to this recurrence.

Solution:
Recurring down to depth \(k \) yields:

\[
T(n) = (n - 1) + 2T \left(\frac{n}{2} \right) = (n - 1) + 2 \left[\left(\frac{n}{2} - 1 \right) + 2T \left(\frac{n}{2^2} \right) \right] = (n - 1) + (n - 2) + 2^2 T \left(\frac{n}{2^2} \right) = (n - 1) + (n - 2) + 2^2 \left[\left(\frac{n}{2^2} - 1 \right) + 2T \left(\frac{n}{2^3} \right) \right] = (n - 1) + (n - 2) + (n - 2^2) + 2^3 T \left(\frac{n}{2^3} \right) \]

\[
\vdots
\]

\[
= \sum_{i=0}^{k-1} (n - 2^i) + 2^k T \left(\frac{n}{2^k} \right).
\]

The recursion halts when \(k \) satisfies: \(\frac{n}{2^k} = 1 \Leftrightarrow n = 2^k \Leftrightarrow k = \log n \). For this \(k \) we have

\[
T(n) = \sum_{i=0}^{k-1} (n - 2^i) + 2^k T(1)
\]
\[
= \sum_{i=0}^{k-1} n + \sum_{i=0}^{k-1} 2^i + 2^k \cdot 0
\]
\[
= k \cdot n + \frac{2^k - 1}{2 - 1}
\]
\[
= n \lg n + 2^k - 1,
\]
and hence \(T(n) = n \lg n + n - 1 \).

One can check directly that this function solves the above recurrence. First \(T(1) = 1 \cdot 0 + 1 - 1 = 0 \).

For the recursive branch, observe that
\[
\text{RHS} = 2T\left(\frac{n}{2}\right) + (n - 1)
= 2 \left[\left(\frac{n}{2}\right) \lg \left(\frac{n}{2}\right) + \left(\frac{n}{2}\right) - 1 \right] + (n - 1)
= n(\lg n - \lg 2) + n - 2 + n - 1
= n \lg n - n \lg 2 + 2n - 1
= n \lg n - n + 1
= \text{LHS},
\]
showing that \(T(n) = n \lg n + n - 1 \) solves the recurrence in the special case that \(n \) is and exact power of two.

\[\blacksquare\]