1. (20 Points) Let \(k \) be an integer in the range \(9 < k < 27 \), and assume there exists a method for multiplying two \(3 \times 3 \) matrices by performing sums and products of the matrix elements, and in which only \(k \) of the operations are products (and which product is not assumed to be commutative.)

 a. (5 Points) Explain how this method can be used to recursively multiply two \(n \times n \) real matrices, where \(n \) is an exact power of 3. (You need not write pseudo-code, a verbal description will suffice.)

 Solution:
 Regard an \(n \times n \) square matrix (where \(n \) is a power of 3) as a \(3 \times 3 \) matrix, each of whose 9 elements is a square submatrix of size \(\frac{n}{3} \times \frac{n}{3} \). To multiply two \(n \times n \) square matrices, we multiply two \(3 \times 3 \) matrices of matrices. We suppose this multiplication can be done by performing only \(k \) multiplications of the underlying \(\frac{n}{3} \times \frac{n}{3} \) matrices (which are non-commutative operations). Since \(n \) is a power of 3, we can recur on this process down to matrices of size \(1 \times 1 \), where the recursion halts. At each level, there are \(k \) recursive multiplications of 9 matrices whose size is \(1/3^{rd} \) that of the current level. ■

 b. (3 Points) Write a recurrence relation for the running time \(T(n) \) of the algorithm you described in (a). (Note that this recurrence will contain \(k \) as a parameter.)

 Solution:
 We can write this as either \(T(n) = k T(n/3) + \Theta(1) \) or \(T(n) = k T(n/3) + \Theta(n^2) \). The first term is the cost of the \(k \) recursive calls. In the first recurrence, \(\Theta(1) \) is the overhead cost of the current recursive invocation. In the second recurrence, \(\Theta(n^2) \) is the cost of the real number additions needed to compute the product. (Note to grader: consider either recurrence to be correct.) ■

 c. (4 Points) Use the Master Theorem to find an asymptotic solution to the recurrence you found in (b). (Note your answer will again depend on \(k \).)

 Solution:
 \(T(n) = k T(n/3) + \Theta(1) \):
 Compare \(1 = n^0 \) to \(n \log_3(k) \). Let \(\epsilon = \log_3(k) - 0 \). Then \(\epsilon > 0 \), and \(1 = O(n^{\log_3(k) - \epsilon}) \), so by case 1 we have \(T(n) = \Theta(n^{\log_3(k)}) \).

 \(T(n) = k T(n/3) + \Theta(n^2) \):
 Compare \(n^2 \) to \(n \log_3(k) \). Let \(\epsilon = \log_3(k) - 2 \). Then \(\epsilon > 0 \) since \(k > 9 \), and so \(n^2 = O(n^{\log_3(k) - \epsilon}) \). Again by case 1 we have \(T(n) = \Theta(n^{\log_3(k)}) \). ■

 d. (8 Points) Determine the largest integer \(k \) for which \(T(n) = o(n^{\log_3(k)}) \), making your algorithm in (a) better than Strassen’s.

 Solution:
 We seek the largest integer \(k \) such that \(n^{\log_3(k)} = o(n^{\log_3(7)}) \), or equivalently \(\log_3(k) < \log_2(7) \). Therefore \(k < 3^{\log_2(7)} \), and hence \(k = \lfloor 3^{\log_2(7)} \rfloor = 21 \). ■
2. (20 Points) Let T be a k-ary tree with n leaves and height h. Prove that $h \geq \lceil \log_k(n) \rceil$. (Hint: Let $L(T)$ and $H(T)$ denote the number of leaves and the height (respectively) of the tree T, then proceed by induction on $h = H(T)$.)

Proof:
I. If $h = 0$, then T contains just one node (the root), which is also a leaf. Thus $n = L(T) = 1$, and the inequality $h \geq \lceil \log_k(n) \rceil$ reduces to $0 \geq 0$. The base case is therefore satisfied.

II. Let $h > 0$, and assume for any a k-ary tree T' with $H(T') = h - 1$, that $H(T') \geq \lceil \log_k(L(T')) \rceil$. We must show that $H(T) \geq \lceil \log_k(L(T)) \rceil$, i.e. $h \geq \lceil \log_k(n) \rceil$. Let T' be the k-ary tree obtained by deleting from T, all leaves at depth h (along with all of their incident edges.) Observe then that $H(T') = h - 1$, and so by the induction hypothesis $H(T') \geq \lceil \log_k(L(T')) \rceil$. Since each node in T has at most k children, we also have $L(T) \leq kL(T')$, and hence $L(T') \geq L(T)/k$. Putting these inequalities together, we get

$$h - 1 = H(T')$$

$$\geq \lceil \log_k(L(T')) \rceil \tag{by the induction hypothesis}$$

$$\geq \lceil \log_k(L(T)/k) \rceil$$

$$= \lceil \log_k(L(T)) - 1 \rceil$$

$$\geq \lceil \log_k(n) \rceil - 1$$

and therefore $h \geq \lceil \log_k(n) \rceil$, as required. ■

3. (20 Points) Let G be a graph, let x and y be vertices in G, and let

$$p: x = v_0, v_1, v_2, ..., v_k = y$$

be a shortest x-y path in G. Show that any subsequence of p is also a shortest path joining its two ends. In other words, if $r = v_i$ and $s = v_j$ are any two intermediate vertices with $0 \leq i < j \leq k$, then the subsequence $r = v_i, ..., v_j = s$ is a shortest r-s path in G.

Proof:
Let the subsequences p_1, p_2 and p_3 of p be defined by

$$p_1: x = v_0, ..., v_i = r$$

$$p_2: r = v_i, ..., v_j = s$$

$$p_3: s = v_j, ..., v_k$$

We must show that p_2 is a shortest r-s path. Assume, to get a contradiction, that G contains an r-s path shorter than p_2, call it p'. Then $\text{length}(p') < \text{length}(p_2) = j - i$, and hence the path obtained by concatenating p_1, p' and p_3 has length

$$\text{length}(p_1) + \text{length}(p') + \text{length}(p_3) < i + (j - i) + (k - j) = k = \text{length}(p),$$

contradicting that p is a shortest x-y path. This contradiction shows that p_2 is a shortest r-s path in G, as required. ■
4. (20 Points) Suppose we are given an unlimited number of coins in each of the denominations \(d = (1,2,5,7,9) \). We wish to pay \(N = 14 \) monetary units using the least number of coins. Let \(C[i,j] \) denote the minimum number of coins needed to pay \(j \) units using only coins in the denominations \((d_1, \ldots, d_i) \), where \(1 \leq i \leq 5 \) and \(0 \leq j \leq 14 \).

a. (10 Points) Write a recursive formula for \(C[i,j] \). Carefully define boundary values and out-of-bounds values in such a way that \(C[i,j] \) is defined for all \(i \) and \(j \).

Solution:

\[
C[i,j] = \begin{cases}
0 & i \geq 1 \text{ and } j = 0 \\
\min\{C[i-1,j], 1 + C[i,j-d_i]\} & i \geq 1 \text{ and } j > 0 \\
\infty & i \leq 0 \text{ or } j < 0
\end{cases}
\]

b. (10 Points) Fill in the following table containing the values of \(C[i,j] \). Use this table to determine two optimal solutions to this problem, i.e. two different ways to pay 14 monetary units using the least number of possible coins.

| | \(d \) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| 2 | 2 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 7 | 7 |
| 3 | 5 | 0 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 |
| 4 | 7 | 0 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 3 | 2 | 3 | 2 |
| 5 | 9 | 0 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 3 |

Express your solutions by giving a vector \(x = (x_1, x_2, x_3, x_4, x_5) \) for which \(\sum_{i=1}^{5} x_i d_i = 14 \).

Optimal Solution 1: \(x = (0, 0, 1, 0, 1) \), **one 5 unit coin, and one 9 unit coin**.

Optimal Solution 2: \(x = (0, 0, 0, 2, 0) \), **two 7 unit coins**.
5. (20 Points) A thief wishes to steal objects \(\{1, 2, 3, 4, 5, 6\} \), having values \(v[1 \cdots 6] = (5, 5, 9, 4, 4, 12) \) and weights \(w[1 \cdots 6] = (1, 4, 3, 4, 1, 6) \), where it is permissible to steal a fraction of an object. His goal is to maximize the total value of the goods stolen \(\sum_{i=1}^{6} x_i v_i \), where \(x_i \) denotes the fraction of object \(i \) to be stolen (0 \(\leq x_i \leq 1 \) for \(1 \leq i \leq 6 \)). The total weight of the stolen goods \(\sum_{i=1}^{6} x_i w_i \) must not exceed the capacity of his knapsack: \(W = 9 \). Determine an optimal solution to this problem using a greedy strategy, with selection function \(f(i) = v_i/w_i \), i.e. order the objects by decreasing value-to-weight ratios, then steel as much of each object as is possible, in that order, never exceeding the capacity of the knapsack. Express your solution as the vector \(x = (x_1, x_2, x_3, x_4, x_5, x_6) \), and give the value of this optimal solution.

Solution:
The value to weight ratios are: \((5, 1.25, 3, 1, 4, 2) \). Thus the thief should steal, in order

- All of object 1 (value 5 and weight 1)
- All of object 5 (value 4 and weight 1)
- All of object 3 (value 9 and weight 3)
- 2/3 of object 6 (value 8 and weight 4)

The solution vector is therefore \(x = (1, 0, 1, 0, 1, 2/3) \), with total weight 9 and total value 26. ■