1. (20 Points) Prove that if \(h_1(n) = \Theta(f(n)) \) and \(h_2(n) = \Theta(g(n)) \), then \(h_1(n)h_2(n) = \Theta(f(n)g(n)) \).

Proof:

We have:

\[\exists \text{ positive } a_1, b_1, n_1 \text{ such that } \forall n \geq n_1: 0 \leq a_1 f(n) \leq h_1(n) \leq b_1 f(n) \]
\[\exists \text{ positive } a_2, b_2, n_2 \text{ such that } \forall n \geq n_2: 0 \leq a_2 g(n) \leq h_2(n) \leq b_2 g(n) \]

Define \(a = a_1 a_2, b = b_1 b_2 \) and \(n_0 = \max(n_1, n_2) \). Then \(a, b \) and \(n_0 \) are positive. If \(n \geq n_0 \), then both of the above inequalities are true. Upon multiplying these inequalities, we get

\[\exists \text{ positive } a, b, n_0 \text{ such that } \forall n \geq n_0: 0 \leq a f(n) g(n) \leq h_1(n) h_2(n) \leq b f(n) g(n) \]

showing that \(h_1(n)h_2(n) = \Theta(f(n)g(n)) \).

\[\square \]

2. (20 Points) Use Stirling's formula to prove that \(\frac{(3n)!}{(n!)^3} = \Theta\left(\frac{27^n}{n}\right) \).

Proof:

\[
\frac{(3n)!}{(n!)^3} = \frac{\sqrt{2\pi} \cdot 3^n \cdot \left(\frac{3n}{e}\right)^{3n} \cdot \left(1 + \Theta\left(\frac{1}{3n}\right)\right)}{\left(\sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot \left(1 + \Theta\left(\frac{1}{n}\right)\right)\right)^3}
\]

\[
= \frac{\sqrt{3}}{2\pi} \cdot \frac{1}{n} \cdot 3^{3n} \cdot n^{3n} \cdot e^{-3n} \cdot \left(1 + \Theta\left(\frac{1}{3n}\right)\right) \cdot \left(1 + \Theta\left(\frac{1}{n}\right)\right)^3
\]

\[
= \frac{\sqrt{3}}{2\pi} \cdot \frac{27^n}{n} \cdot \left(1 + \Theta\left(\frac{1}{3n}\right)\right) \cdot \left(1 + \Theta\left(\frac{1}{n}\right)\right)^3
\]

Therefore

\[
\frac{(3n)!}{(n!)^3} = \frac{\sqrt{3}}{2\pi} \cdot \frac{27^n}{n} \cdot \left(1 + \Theta\left(\frac{1}{3n}\right)\right) \cdot \left(1 + \Theta\left(\frac{1}{n}\right)\right)^3 \rightarrow \frac{\sqrt{3}}{2\pi} \text{ as } n \to \infty
\]

Since \(0 < \sqrt{3}/2\pi < \infty \), it follows that \(\frac{(3n)!}{(n!)^3} = \Theta\left(\frac{27^n}{n}\right) \).

\[\square \]
3. (20 Points) The nth harmonic number is defined to be the sum $H_n = \sum_{k=1}^{n} \left(\frac{1}{k} \right)$. Use induction to prove that for all $n \geq 1$:

$$\sum_{k=1}^{n} H_k = (n + 1)H_n - n$$

(Hint: Use the fact that H_n satisfies the recurrence relation $H_n = H_{n-1} + \frac{1}{n}$.)

Proof:
I. If $n = 1$, then $H_1 = 1$ and $\sum_{k=1}^{1} H_k = 1 = 2 - 1 = (1 + 1) \cdot 1 - 1 = (1 + 1)H_1 - 1$, so the base case is satisfied.

II. Let $n > 1$ be chosen arbitrarily, and assume $\sum_{k=1}^{n-1} H_k = ((n - 1) + 1)H_{n-1} - (n - 1)$. We must show that $\sum_{k=1}^{n} H_k = (n + 1)H_n - n$. We have

$$\sum_{k=1}^{n} H_k = \sum_{k=1}^{n-1} H_k + H_n$$

$$= ((n - 1) + 1)H_{n-1} - (n - 1) + H_n \quad \text{by the induction hypothesis}$$

$$= nH_{n-1} - n + 1 + H_n$$

$$= nH_n - nH_n + nH_{n-1} - n + 1 + H_n$$

$$= (n + 1)H_n - n + 1 - n(H_n - H_{n-1})$$

$$= (n + 1)H_n - n + 1 - n \left(\frac{1}{n} \right) \quad \text{by the recurrence for } H_n$$

$$= (n + 1)H_n - n,$$

as required. If follows that $\sum_{k=1}^{n} H_k = (n + 1)H_n - n$ for all $n \geq 1$. ■
4. (20 Points) Use the Master Theorem to find a tight asymptotic bound for \(T(n) = 15T(n/4) + n^2 \).

Solution:

Compare \(n^2 \) to \(n^{\log_4(15)} \). Observe \(15 < 16 \Rightarrow \log_4(15) < 2 \Rightarrow \epsilon = 2 - \log_4(15) > 0 \). Then \(n^2 = \Omega(n^2) = \Omega(n^{\log_4(15)} + \epsilon) \). Picking \(c \) in the range \(15/16 \leq c < 1 \) gives \(15(n/4)^2 = (15/16)n^2 \leq cn^2 \), establishing the regularity condition. By case (3) \(T(n) = \Theta(n^2) \).

5. (20 Points) The following recursive algorithm determines whether an array is sorted. Variables \(B_1, B_2 \) and \(B_3 \) are Boolean, and \(\land \) represents the Logical And operator.

```plaintext
Sorted(A, p, r)  precondition: r \geq p
1.  if r = p
2.    return TRUE
3.  else
4.    q = ⌊(p + r)/2⌋
5.    B_1 = Sorted(A, p, q)
6.    B_2 = Sorted(A, q + 1, r)
7.    B_3 = (A[q] \leq A[q + 1])
8.    return (B_1 \land B_2 \land B_3)
```

a. (10 Points) Use induction on \(m = \text{length}(A[p \cdots r]) \) to prove the correctness of the above algorithm, i.e. prove that \(\text{Sorted}(A, p, r) \) returns TRUE if and only if \(A[p \cdots r] \) is sorted in increasing order.

Proof:

I. Let \(m = 1 \). Then \(\text{length}(A[p \cdots r]) = r - p + 1 = 1 \Rightarrow r = p \), and TRUE is returned on line 2 of the algorithm. Indeed, an array of length 1 is always sorted, so the algorithm returns a correct value. The base case is therefore established.

II. Let \(m > 1 \) and assume \(\text{Sorted()} \) returns a correct value on all sub-arrays of length less than \(m \). We must show that \(\text{Sorted()} \) returns a correct value when run on any array of length \(m \). Since \(m > 1 \), we have \(m = r - p + 1 > 1 \Rightarrow r > p \), so line 2 is skipped and lines 4-8 are executed. Also

\[
p < r \Rightarrow p + r < 2r \Rightarrow \lfloor (p + r)/2 \rfloor < r \Rightarrow q < r
\]
\[
 \Rightarrow q - p + 1 < r - p + 1
 \Rightarrow \text{length}(A[p \cdots q]) < m
\]

and

\[
p < r \Rightarrow 2p < p + r \Rightarrow p < \frac{p + r}{2}
\]
\[
 \Rightarrow p < \lfloor (p + r)/2 \rfloor + 1 \Rightarrow p < q + 1
 \Rightarrow r - q < r - p + 1
 \Rightarrow m
\]

The induction hypothesis guarantees that lines (5) and (6) return correct values for sub-arrays \(A[p \cdots q] \) and \(A[q + 1 \cdots r] \). Observe \(A[p \cdots r] \) is sorted in increasing order if and only if: \(A[p \cdots q] \) is sorted, \(A[q + 1 \cdots r] \) is sorted and \(A[q] \leq A[q + 1] \). Thus \(A[p \cdots r] \) is sorted if and only if the value of the Boolean expression \(B_1 \land B_2 \land B_3 \) returned on line (8) is TRUE. Therefore, \(\text{Sorted}(A, p, r) \) returns TRUE if and only if \(A[p \cdots r] \) is sorted in increasing order, as required. ■
b. (10 Points) Let \(T(n) \) denote the number of array comparisons performed by Sorted() on an array of length \(n \). Write a recurrence relation for \(T(n) \). Determine a tight asymptotic bound for \(T(n) \).

Solution:
If \(p = 1 \), \(r = n \), and \(q = \lfloor (n + 1)/2 \rfloor \) then \(\text{length}(A[1 \cdots q]) = \lfloor n/2 \rfloor \) and \(\text{length}(A[q + 1 \cdots n]) = \lceil n/2 \rceil \). (This was an exercise stated in class.) Therefore \(T(n) \) must satisfy the recurrence

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 & \text{if } n \geq 2
\end{cases}
\]

To apply the Master Theorem, we write this as \(T(n) = 2T(n/2) + 1 \). We compare \(1 = n^0 \) to \(n^{\log_2(2)} = n^1 \). Let \(\epsilon = 1 - 0 = 1 \). Then \(\epsilon > 0 \) and \(1 = O(n^0) = O(n^{\log_2(2) - \epsilon}) \), and by case (1) we have \(T(n) = \Theta(n) \). ■

Alternative Solution:
One can show directly that \(T(n) = n - 1 \) is an exact solution to this recurrence. First note that when \(n = 1 \), \(T(1) = 0 \). If \(n \geq 1 \) then

\[
\text{RHS} = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 \\
= (\lfloor n/2 \rfloor - 1) + (\lceil n/2 \rceil - 1) + 1 \\
= (\lfloor n/2 \rfloor + \lceil n/2 \rceil) - 1 \\
= n - 1 \\
= T(n) \\
= \text{LHS}
\]

so \(T(n) = n - 1 \) solves the recurrence, and \(T(n) = \Theta(n) \). ■