Chapter 6
Dynamic Programming

Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.
- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
 - "it’s impossible to use dynamic in a pejorative sense"
 - "something not even a Congressman could object to"

Dynamic Programming Applications

Areas.
- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, systems, ...

Some famous dynamic programming algorithms.
- Viterbi for hidden Markov models.
- Unix diff for comparing two files.
- Smith-Waterman for sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.
6.1 Weighted Interval Scheduling

Weighted interval scheduling problem.
- Job j starts at s_j, finishes at f_j, and has weight or value v_j.
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_1 \leq f_2 \leq \ldots \leq f_n$.

Def. $p(j)$ = largest index $i < j$ such that job i is compatible with j.

Ex: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$.

Diagram:
- Time line with intervals representing jobs.
- Different weights indicated by different colors.
- Example of how intervals are chosen based on compatibility and weight.
Dynamic Programming: Binary Choice

Notation. \(OPT(j) \) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

- Case 1: OPT selects job j.
 - can’t use incompatible jobs \{ p(j) + 1, p(j) + 2, ..., j - 1 \}
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)

- Case 2: OPT does not select job j.
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \{ v_j + OPT(p(j)), OPT(j-1) \} & \text{otherwise}
\end{cases}
\]

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

Input: \(n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n, v_1, v_2, ..., v_n \)

Sort jobs by finish times so that \(f_1 \leq f_2 \leq ... \leq f_n \).

Compute \(p(1), p(2), ..., p(n) \)

\[
\text{Compute-Opt}(j) = \begin{cases}
\text{max} & \text{if } j = 0 \\
\max(v_j + \text{Compute-Opt}(p(j)), \text{Compute-Opt}(j-1)) & \text{otherwise}
\end{cases}
\]

Memoization. Store results of each sub-problem in a cache; lookup as needed.

Input: \(n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n, v_1, v_2, ..., v_n \)

Sort jobs by finish times so that \(f_1 \leq f_2 \leq ... \leq f_n \).

Compute \(p(1), p(2), ..., p(n) \)

\[
\text{M-Compute-Opt}(j) = \begin{cases}
\text{max} & \text{if } (M[j] \text{ is empty}) \\
M[j] = \max(w_j + \text{M-Compute-Opt}(p(j)), \text{M-Compute-Opt}(j-1)) & \text{otherwise}
\end{cases}
\]

return \(M[j] \)
Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes \(O(n \log n)\) time.
- Sort by finish time: \(O(n \log n)\).
- Computing \(p(\cdot)\): \(O(n)\) after sorting by start time.

- \(M\)-Compute-Opt\((j)\): each invocation takes \(O(1)\) time and either
 - (i) returns an existing value \(M[j]\)
 - (ii) fills in one new entry \(M[j]\) and makes two recursive calls

- Progress measure \(\Phi = \#\) nonempty entries of \(M[\cdot]\).
 - Initially \(\Phi = 0\), throughout \(\Phi \leq n\).
 - (ii) increases \(\Phi\) by 1 \(\Rightarrow\) at most \(2n\) recursive calls.

- Overall running time of \(M\)-Compute-Opt\((n)\) is \(O(n)\).

Remark. \(O(n)\) if jobs are pre-sorted by start and finish times.

Automated Memoization

Automated memoization. Many functional programming languages
(e.g., Lisp) have built-in support for memoization.

Q. Why not in imperative languages (e.g., Java)?

\[
\begin{align*}
\text{(defun } F (n) \\
& \quad \text{ (if } \quad) \\
& \quad \quad \quad \text{ (n } \leq 1) \\
& \quad \quad \quad \quad \text{ n} \\
& \quad \quad \quad \quad \quad \text{ (+ (F (n - 1))) (F (- n 2)))))
\end{align*}
\]

Java (exponential)

Input: \(n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n\)

Sort jobs by finish time so that \(f_1 \leq f_2 \leq \ldots \leq f_n\).

Compute \(p(1), p(2), \ldots, p(n)\)

Iterative-Compute-Opt \(\{\)
\[\begin{align*}
M[0] &= 0 \\
\text{ for } j = 1 \text{ to } n \\
M[j] &= \text{max}(v_j + M[p(j)], M[j-1])
\end{align*}\]

Bottom-up dynamic programming. Unwind recursion.

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if
we want the solution itself?
A. Do some post-processing.

Run \(M\)-Compute-Opt\((n)\)
Run \(\text{Find-Solution}(n)\)

\[
\text{Find-Solution}(j) \{ \\
\quad \text{ if } (j = 0) \\
\quad \quad \text{ output nothing} \\
\quad \text{ else if } (v_j + M[p(j)] > M[j-1]) \\
\quad \quad \quad \text{ print } j \\
\quad \quad \quad \text{ Find-Solution}(p(j)) \\
\quad \text{ else } \\
\quad \quad \text{ Find-Solution}(j-1) \\
\}
\]

- # of recursive calls \(\leq n \Rightarrow O(n)\).
6.3 Segmented Least Squares

Segmented least squares.
- Points lie roughly on a sequence of several line segments.
- Given n points in the plane \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\) with \(x_1 < x_2 < \ldots < x_n\), find a sequence of lines that minimizes \(f(x)\).

Q. What’s a reasonable choice for \(f(x)\) to balance accuracy and parsimony?

\[
\begin{align*}
\text{Segmented Least Squares} \\
\text{Least squares.} \\
\text{Foundational problem in statistic and numerical analysis.} \\
\text{Given n points in the plane: } (x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n). \\
\text{Find a line } y = ax + b \text{ that minimizes the sum of the squared error:}
\end{align*}
\]

\[
\text{SSE} = \sum_{i=1}^{n} (y_i - ax_i - b)^2
\]

Solution. Calculus \(\Rightarrow\) min error is achieved when

\[
\begin{align*}
a &= \frac{n \sum x_i y_i - (\sum x_i)(\sum y_i)}{n \sum x_i^2 - (\sum x_i)^2}, \\
b &= \frac{\sum y_i - a \sum x_i}{n}
\end{align*}
\]

Q. What’s a reasonable choice for \(f(x)\) to balance accuracy and parsimony?

\[
\begin{align*}
\text{Tradeoff function: } E + c L, \text{ for some constant } c > 0.
\end{align*}
\]
6.4 Knapsack Problem

Dynamic Programming: Multiway Choice

Notation.
- \(OPT(j) \) = minimum cost for points \(p_1, p_{i+1}, \ldots, p_j \).
- \(e(i, j) \) = minimum sum of squares for points \(p_i, p_{i+1}, \ldots, p_j \).

To compute \(OPT(j) \):
- Last segment uses points \(p_i, p_{i+1}, \ldots, p_j \) for some \(i \).
- Cost = \(e(i, j) + c + OPT(i-1) \).

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\min_{i \in S} \{ e(i, j) + c + OPT(i-1) \} & \text{otherwise}
\end{cases}
\]

Segmented Least Squares: Algorithm

INPUT: \(n, p_1, \ldots, p_n, c \)

Segmented-Least-Squares()
1. \(M[0] = 0 \)
2. for \(j = 1 \) to \(n \)
 1. for \(i = 1 \) to \(j \)
 1. compute the least square error \(e_{ij} \) for the segment \(p_i, \ldots, p_j \)
 2. \(M[j] = \min_{1 \leq i \leq j} (e_{ij} + c + M[i-1]) \)
3. return \(M[n] \)

Running time. \(O(n^2) \). can be improved to \(O(n^3) \) by pre-computing various statistics.

Knapsack Problem

Given \(n \) objects and a "knapsack."
- Item \(i \) weighs \(w_i > 0 \) kilograms and has value \(v_i > 0 \).
- Knapsack has capacity of \(W \) kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: \{3, 4\} has value 40.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

\(W = 11 \)

Greedy: repeatedly add item with maximum ratio \(v_i / w_i \).
Ex: \{5, 2, 1\} achieves only value = 35 \(\Rightarrow \) greedy not optimal.
Dynamic Programming: False Start

Def. $OPT(i) =$ max profit subset of items 1, ..., i.

- Case 1: OPT does not select item i.
 - OPT selects best of \{1, 2, ..., i-1\}

- Case 2: OPT selects item i.
 - accepting item i does not immediately imply that we will have to reject other items
 - without knowing what other items were selected before i, we don’t even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. $OPT(i, w) =$ max profit subset of items 1, ..., i with weight limit w.

- Case 1: OPT does not select item i.
 - OPT selects best of \{1, 2, ..., i-1\} using weight limit w

- Case 2: OPT selects item i.
 - new weight limit = $w - w_i$
 - OPT selects best of \{1, 2, ..., i-1\} using this new weight limit

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max\{OPT(i-1, w), v_i + OPT(i-1, w-w_i)\} & \text{otherwise} \end{cases}$$

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

Input: n, w1, ..., wn, v1, ..., vn

for w = 0 to W
 M[0, w] = 0

for i = 1 to n
 for w = 1 to W
 if (wi > w)
 M[i, w] = M[i-1, w]
 else
 M[i, w] = max\{M[i-1, w], vi + M[i-1, w-wi]\}

return M[n, W]

Knapsack Algorithm

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

OPT: \{4, 3\}
value = 22 + 18 = 40

W = 11
Knapsack Problem: Running Time

Running time. \(\Theta(nW) \).
- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial algorithm that produces a feasible solution that has value within 0.01\% of optimum. [Section 11.8]

6.5 RNA Secondary Structure

RNA Secondary Structure. A set of pairs \(S = \{ (b_i, b_j) \} \) that satisfy:
- [Watson-Crick.] \(S \) is a matching and each pair in \(S \) is a Watson-Crick complement: \(A-U, U-A, C-G, \) or \(G-C \).
- [No sharp turns.] The ends of each pair are separated by at least 4 intervening bases. If \((b_i, b_j) \in S \), then \(i < j - 4 \).
- [Non-crossing.] If \((b_i, b_j) \) and \((b_k, b_l) \) are two pairs in \(S \), then we cannot have \(i < k < j < l \).

Free energy. Usual hypothesis is that an RNA molecule will form the secondary structure with the optimum total free energy.

Goal. Given an RNA molecule \(B = b_1b_2\ldots b_n \), find a secondary structure \(S \) that maximizes the number of base pairs.
Dynamic Programming Over Intervals

Notation. \(\text{OPT}(i, j) = \) maximum number of base pairs in a secondary structure of the substring \(b_i b_{i+1} \ldots b_j \).

- **Case 1.** If \(i = j - 4 \),
 - \(\text{OPT}(i, j) = 0 \) by no-sharp turns condition.
- **Case 2.** Base \(b_i \) is not involved in a pair.
 - \(\text{OPT}(i, j) = \text{OPT}(i, j-1) \)
- **Case 3.** Base \(b_j \) pairs with \(b_t \) for some \(i + 1 \leq t < j - 4 \).
 - non-crossing constraint decouples resulting sub-problems
 - \(\text{OPT}(i, j) = 1 + \max_t \{ \text{OPT}(i, t+1) + \text{OPT}(t+1, j-1) \} \)

 take max over \(t \) such that \(i + 1 \leq t < j - 4 \)

 \(b_t \) and \(b_j \) are Watson-Crick complements

Remark. Same core idea in CKY algorithm to parse context-free grammars.

RNA Secondary Structure: Examples

Examples.

RNA Secondary Structure: Subproblems

First attempt. \(\text{OPT}(j) = \) maximum number of base pairs in a secondary structure of the substring \(b_1 b_2 \ldots b_j \).

- match \(b_t \) and \(b_n \)
- \(1 \leq t < n \)

Difficulty. Results in two sub-problems.
- Finding secondary structure in: \(b_1 b_2 \ldots b_{t-1} \)
- Finding secondary structure in: \(b_{t+1} b_{t+2} \ldots b_{n-1} \)

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?
A. Do shortest intervals first.

```java
RNA \{ b_1, \ldots, b_n \} \{
    for k = 5, 6, \ldots, n-1
    for i = 1, 2, \ldots, n-k
        j = i + k
        Compute \text{M}[i, j]
    return \text{M}[1, n]
}
```

Running time. \(O(n^3) \).
Dynamic Programming Summary

Recipe.
- Characterize structure of problem.
- Recursively define value of optimal solution.
- Compute value of optimal solution.
- Construct optimal solution from computed information.

Dynamic programming techniques.
- Binary choice: weighted interval scheduling.
- Multi-way choice: segmented least squares.
- Adding a new variable: knapsack.
- Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up: different people have different intuitions.

String Similarity

How similar are two strings?
- occurrence
- occurrence

<table>
<thead>
<tr>
<th>5 mismatches, 1 gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>occurrence</td>
</tr>
<tr>
<td>occurrence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 mismatch, 1 gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>occurrence</td>
</tr>
<tr>
<td>occurrence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0 mismatches, 3 gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>occurrence</td>
</tr>
<tr>
<td>occurrence</td>
</tr>
</tbody>
</table>

Edit Distance

Applications.
- Basis for Unix diff.
- Speech recognition.
- Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
- Gap penalty δ; mismatch penalty α_{pq}
- Cost = sum of gap and mismatch penalties.

$\alpha_{cc} + \alpha_{gt} + \alpha_{ag} + 2\alpha_{ca}$

$2\delta + \alpha_{ca}$
Sequence Alignment

Goal: Given two strings \(X = x_1 x_2 \ldots x_m \) and \(Y = y_1 y_2 \ldots y_n \) find alignment of minimum cost.

Def. An alignment \(M \) is a set of ordered pairs \(x_i - y_j \) such that each item occurs in at most one pair and no crossings.

Def. The pair \(x_i - y_j \) and \(x_i - y_j \) are **crosses** if \(i < i' \), but \(j > j' \).

\[
\text{cost}(M) = \sum_{(x_i, y_j) \in M} \alpha_{x_i, y_j} + \sum_{x_i \text{ unmatched}} \delta + \sum_{y_j \text{ unmatched}} \delta
\]

Ex: CTACCG vs. TACATG.

Sol: \(M = x_2 - y_1, x_3 - y_2, x_4 - y_3, x_5 - y_4, x_6 - y_5 \).

Sequence Alignment: Problem Structure

Def. \(\text{OPT}(i, j) = \text{min cost of aligning strings } x_1 x_2 \ldots x_i \text{ and } y_1 y_2 \ldots y_j \).

- **Case 1:** \(\text{OPT} \) matches \(x_i - y_j \).
 - Pay mismatch for \(x_i - y_j \) + min cost of aligning two strings \(x_1 x_2 \ldots x_i \text{ and } y_1 y_2 \ldots y_j \).
- **Case 2a:** \(\text{OPT} \) leaves \(x_i \) unmatched.
 - Pay gap for \(x_i \) and min cost of aligning \(x_1 x_2 \ldots x_i \) and \(y_1 y_2 \ldots y_j \).
- **Case 2b:** \(\text{OPT} \) leaves \(y_j \) unmatched.
 - Pay gap for \(y_j \) and min cost of aligning \(x_1 x_2 \ldots x_i \) and \(y_1 y_2 \ldots y_{j-1} \).

\[
\text{OPT}(i,j) = \begin{cases}
 j\delta & \text{if } i = 0 \\
 \alpha_{x_i,y_j} + \text{OPT}(i-1,j-1) & \text{if } j > 0 \\
 \min \left(\begin{array}{c}
 \delta + \text{OPT}(i-1,j) \\
 \delta + \text{OPT}(i,j-1) \\
 \end{array} \right) & \text{otherwise}
\end{cases}
\]

Sequence Alignment: Algorithm

```c
Sequence-Alignment(m, n, x_1 x_2 \ldots x_m, y_1 y_2 \ldots y_n, \alpha, \delta) {
  for i = 0 to m
    M[0, i] = i\delta
  for j = 0 to n
    M[j, 0] = j\delta
  for i = 1 to m
    for j = 1 to n
      M[i, j] = \min(\alpha[x_i, y_j] + M[i-1, j-1], \delta + M[i-1, j], \delta + M[i, j-1])
  return M[m, n]
}
```

Analysis. \(\Theta(mn) \) time and space.

English words or sentences: \(m, n < 10 \).

Computational biology: \(m = n = 100,000 \). 10 billions ops OK, but 10GB array?
Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in $O(m + n)$ space and $O(mn)$ time.
- Compute $OPT(i, \cdot)$ from $OPT(i-1, \cdot)$.
- No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in $O(m + n)$ space and $O(mn)$ time.
- Clever combination of divide-and-conquer and dynamic programming.
- Inspired by idea of Savitch from complexity theory.

Edit distance graph.
- Let $f(i, j)$ be shortest path from $(0,0)$ to (i, j).
- Can compute $f(\cdot, j)$ for any j in $O(mn)$ time and $O(m + n)$ space.

Edit distance graph.
- Let $g(i, j)$ be shortest path from (i, j) to (m, n).
- Can compute by reversing the edge orientations and inverting the roles of $(0, 0)$ and (m, n).
Edit distance graph.

Let $g(i, j)$ be shortest path from (i, j) to (m, n).

Can compute $g(\cdot, j)$ for any j in $O(mn)$ time and $O(m + n)$ space.

Observation 1. The cost of the shortest path that uses (i, j) is $f(i, j) + g(i, j)$.

Observation 2. Let q be an index that minimizes $f(q, n/2) + g(q, n/2)$. Then, the shortest path from $(0, 0)$ to (m, n) uses $(q, n/2)$.

Sequence Alignment: Linear Space

Divide: find index q that minimizes $f(q, n/2) + g(q, n/2)$ using DP.

Align x_q and $y_{n/2}$.

Conquer: recursively compute optimal alignment in each piece.
Theorem. Let \(T(m, n) = \) max running time of algorithm on strings of length at most \(m \) and \(n \). \(T(m, n) = O(mn \log n) \).

Remark. Analysis is not tight because two sub-problems are of size \((q, n/2)\) and \((m - q, n/2)\). In next slide, we save \(\log n \) factor.

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let \(T(m, n) = \) max running time of algorithm on strings of length at most \(m \) and \(n \). \(T(m, n) = O(mn) \).

Pf. (by induction on \(n \))

\[
T(m, n) \leq 2T(m, n/2) + O(mn) \Rightarrow T(m, n) = O(mn \log n)
\]

Sequence Alignment: Running Time Analysis

Theorem. Let \(T(m, n) = \) max running time of algorithm on strings of length at most \(m \) and \(n \). \(T(m, n) = O(mn) \).

Pf. (by induction on \(n \))

\[
\begin{align*}
T(m, 2) & \leq cm \\
T(2, n) & \leq cn \\
T(m, n) & \leq cmn + T(q, n/2) + T(m - q, n/2)
\end{align*}
\]

\[
T(m, n) \leq T(q, n/2) + T(m - q, n/2) + cmn
\]

\[
\leq 2cm/2 + 2c(m-q)n/2 + cmn
\]

\[
= cqn + cmn - cqn + cmn
\]

\[
= 2cmn
\]