Chapter 1

Introduction: Some Representative Problems

Matching Residents to Hospitals

Goal. Given a set of preferences among hospitals and medical school students, design a self-reinforcing admissions process.

Unstable pair: applicant x and hospital y are unstable if:
- x prefers y to its assigned hospital.
- y prefers x to one of its admitted students.

Stable assignment. Assignment with no unstable pairs.
- Natural and desirable condition.
- Individual self-interest will prevent any applicant/hospital deal from being made.

1.1 A First Problem: Stable Matching

Stable Matching Problem

Goal. Given n men and n women, find a "suitable" matching.
- Participants rate members of opposite sex.
- Each man lists women in order of preference from best to worst.
- Each woman lists men in order of preference from best to worst.

![Preference Profiles](image)

Men's Preference Profile

<table>
<thead>
<tr>
<th>Favorite</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>Amy</td>
<td>Bertha</td>
<td>Clare</td>
</tr>
<tr>
<td>Yancey</td>
<td>Bertha</td>
<td>Amy</td>
<td>Clare</td>
</tr>
<tr>
<td>Zeus</td>
<td>Amy</td>
<td>Bertha</td>
<td>Clare</td>
</tr>
</tbody>
</table>

Women's Preference Profile

<table>
<thead>
<tr>
<th>Favorite</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Yancey</td>
<td>Xavier</td>
<td>Zeus</td>
</tr>
<tr>
<td>Bertha</td>
<td>Xavier</td>
<td>Yancey</td>
<td>Zeus</td>
</tr>
<tr>
<td>Clare</td>
<td>Xavier</td>
<td>Yancey</td>
<td>Zeus</td>
</tr>
</tbody>
</table>
Stable Matching Problem

Perfect matching: everyone is matched monogamously.
- Each man gets exactly one woman.
- Each woman gets exactly one man.

Stability: no incentive for some pair of participants to undermine assignment by joint action.
- If matching M, an unmatched pair m-w is unstable if man m and woman w prefer each other to current partners.
- Unstable pair m-w could each improve by eloping.

Stable matching: perfect matching with no unstable pairs.

Stable matching problem. Given the preference lists of n men and n women, find a stable matching if one exists.

Q. Is assignment X-C, Y-B, Z-A stable?
A. No. Bertha and Xavier will hook up.

Q. Is assignment X-C, Y-B, Z-A stable?
A. No. Bertha and Xavier will hook up.

Q. Is assignment X-A, Y-B, Z-C stable?
A. Yes.

Q. Is assignment X-A, Y-B, Z-C stable?
A. Yes.
Stable Roommate Problem

Q. Do stable matchings always exist?
A. Not obvious a priori.

Stable roommate problem.

- 2n people; each person ranks others from 1 to 2n-1.
- Assign roommate pairs so that no unstable pairs.

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Bob</td>
<td>C</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>Chris</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>Doofus</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

Observation. Stable matchings do not always exist for stable roommate problem.

Proof of Correctness: Termination

Observation 1. Men propose to women in decreasing order of preference.

Observation 2. Once a woman is matched, she never becomes unmatched; she only "trades up."

Claim. Algorithm terminates after at most n^2 iterations of while loop.

Pf. Each time through while loop a man proposes to a new woman. There are only n^2 possible proposals.

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Victor</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>Wyatt</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>E</td>
</tr>
<tr>
<td>Xavier</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>Vance</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>Zeus</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
</tbody>
</table>

n(n-1) + 1 proposals required

Proof of Correctness: Perfection

Claim. All men and women get matched.

Pf. (by contradiction)

- Suppose, for sake of contradiction, that Zeus is not matched upon termination of algorithm.
- Then some woman, say Amy, is not matched upon termination.
- By Observation 2, Amy was never proposed to.
- But, Zeus proposes to everyone, since he ends up unmatched.

Propose-And-Reject Algorithm

Propose-and-reject algorithm. [Gale-Shapley 1962] Intuitive method that guarantees to find a stable matching.

```
Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) {
    Choose such a man m
    w = 1st woman on m's list to whom m has not yet proposed
    if (w is free)
        assign m and w to be engaged
    else if (w prefers m to her fiancè m')
        assign m and w to be engaged, and m' to be free
    else
        w rejects m
}
```

n(n-1) + 1 proposals required
Proof of Correctness: Stability

Claim. No unstable pairs.

Pf. (by contradiction)

- Suppose A-Z is an unstable pair: each prefers each other to partner in Gale-Shapley matching S^*.

\[\text{men propose in decreasing order of preference} \]

\[S^* \]

- Case 1: Z never proposed to A.
 \[\Rightarrow Z \text{ prefers his GS partner to A.} \]
 \[\Rightarrow A-Z \text{ is stable.} \]

- Case 2: Z proposed to A.
 \[\Rightarrow A \text{ rejected } Z \text{ (right away or later)} \]
 \[\Rightarrow A \text{ prefers her GS partner to } Z. \quad \text{women only trade up} \]
 \[\Rightarrow A-Z \text{ is stable.} \]

- In either case A-Z is stable, a contradiction.

efficient Implementation

Efficient implementation. We describe $O(n^2)$ time implementation.

Representing men and women.

- Assume men are named 1, ..., n.
- Assume women are named 1', ..., n'.

Engagements.

- Maintain a list of free men, e.g., in a queue.
- Maintain two arrays $\text{wife}[m]$ and $\text{husband}[w]$.
 - set entry to 0 if unmatched
 - if m matched to w then $\text{wife}[m] = w$ and $\text{husband}[w] = m$

Men proposing.

- For each man, maintain a list of women, ordered by preference.
- Maintain an array $\text{count}[m]$ that counts the number of proposals made by man m.

Summary

Stable matching problem. Given n men and n women, and their preferences, find a stable matching if one exists.

Gale-Shapley algorithm. Guarantees to find a stable matching for any problem instance.

Q. How to implement GS algorithm efficiently?

Q. If there are multiple stable matchings, which one does GS find?

Efficient Implementation

Women rejecting/accepting.

- Does woman w prefer man m to man m'?
- For each woman, create inverse of preference list of men.
- Constant time access for each query after $O(n)$ preprocessing.

\[
\begin{array}{c|cccccccc}
\text{Amy} & 1^\text{st} & 2^\text{nd} & 3^\text{rd} & 4^\text{th} & 5^\text{th} & 6^\text{th} & 7^\text{th} & 8^\text{th} \\
\hline
\text{Pref} & 8 & 3 & 7 & 1 & 4 & 5 & 6 & 2 \\
\hline
\text{Inverse} & 4^\text{th} & 8^\text{th} & 2^\text{nd} & 5^\text{th} & 6^\text{th} & 7^\text{th} & 3^\text{rd} & 1^\text{st} \\
\end{array}
\]

\[
\text{for } i = 1 \text{ to } n \\
\quad \text{inverse[pref[i]]} = i
\]

\[
\text{Amy prefers man 3 to 6} \\
\text{since inverse[3] < inverse[6]}
\]

\[
2 \quad 7
\]
Understanding the Solution

Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?

An instance with two stable matchings.
- A-X, B-Y, C-Z.
- A-Y, B-X, C-Z.

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Yancey</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Zeus</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Y</td>
<td>X</td>
</tr>
<tr>
<td>Bertha</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Clare</td>
<td>X</td>
<td>Y</td>
</tr>
</tbody>
</table>

Man Optimality

Claim. GS matching S* is man-optimal.

Pf. (by contradiction)
- Suppose some man is paired with someone other than best partner.
- Men propose in decreasing order of preference ⇒ some man is rejected by valid partner.
- Let Y be first such man, and let A be first valid woman that rejects him.
- Let S be a stable matching where A and Y are matched.
- When Y is rejected, A forms (or reaffirms) engagement with a man, say Z, whom she prefers to Y.
- Let B be Z’s partner in S.
- Z not rejected by any valid partner at the point when Y is rejected by A. Thus, Z prefers A to B.
- But A prefers Z to Y.
- Thus A-Z is unstable in S.

Stable Matching Summary

Stable matching problem. Given preference profiles of n men and n women, find a stable matching.

\[\text{no man and woman prefer to be with each other than assigned partner} \]

Gale-Shapley algorithm. Finds a stable matching in \(O(n^2) \) time.

Man-optimality. In version of GS where men propose, each man receives best valid partner.

\[w \text{ is a valid partner of } m \text{ if there exist some stable matching where } m \text{ and } w \text{ are paired} \]

Q. Does man-optimality come at the expense of the women?
Woman Pessimality

Woman-pessimal assignment. Each woman receives worst valid partner.

Claim. GS finds woman-pessimal stable matching S*.

Pf.
- Suppose A-Z matched in S*, but Z is not worst valid partner for A.
- There exists stable matching S in which A is paired with a man, say Y, whom she likes less than Z.
- Let B be Z’s partner in S.
- Z prefers A to B.
- Thus, A-Z is an unstable in S.

Example: Matching Residents to Hospitals

Ex: Men = hospitals, Women = med school residents.

Variant 1. Some participants declare others as unacceptable.

Variant 2. Unequal number of men and women.

Variant 3. Limited polygamy.

Def. Matching S unstable if there is a hospital h and resident r such that:
- h and r are acceptable to each other; and
- either r is unmatched, or r prefers h to her assigned hospital; and
- either h does not have all its places filled, or h prefers r to at least one of its assigned residents.

Application: Matching Residents to Hospitals

NRMP. (National Resident Matching Program)
- Original use just after WWII. ← predates computer usage
- Ides of March, 23,000+ residents.

Rural hospital dilemma.
- Certain hospitals (mainly in rural areas) were unpopular and declared unacceptable by many residents.
- Rural hospitals were under-subscribed in NRMP matching.
- How can we find stable matching that benefits “rural hospitals”?

Rural Hospital Theorem. Rural hospitals get exactly same residents in every stable matching!

Lessons Learned

Powerful ideas learned in course.
- Isolate underlying structure of problem.
- Create useful and efficient algorithms.

Potentially deep social ramifications. [legal disclaimer]
1.2 Five Representative Problems

Interval Scheduling

Input. Set of jobs with start times and finish times.

Goal. Find maximum cardinality subset of mutually compatible jobs.

![Interval Scheduling Diagram]

Weighted Interval Scheduling

Input. Set of jobs with start times, finish times, and weights.

Goal. Find maximum weight subset of mutually compatible jobs.

![Weighted Interval Scheduling Diagram]

Bipartite Matching

Input. Bipartite graph.

Goal. Find maximum cardinality matching.

![Bipartite Matching Diagram]
Independent Set

Input. Graph.

Goal. Find maximum cardinality independent set.

- Subset of nodes such that no two joined by an edge.

![Graph](image)

Competitive Facility Location

Input. Graph with weight on each node.

Game. Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

![Graph](image)

Second player can guarantee 20, but not 25.

Five Representative Problems

Variations on a theme: independent set.

- **Interval scheduling:** $n \log n$ greedy algorithm.
- **Weighted interval scheduling:** $n \log n$ dynamic programming algorithm.
- **Bipartite matching:** n^k max-flow based algorithm.
- **Independent set:** NP-complete.
- **Competitive facility location:** PSPACE-complete.