A simpler way is to choose a random element in \(A[p...r]\) as pivot, swap that with \(A[i]\), then partition as usual.

\[\text{RandPartition}(A, p, r)\]
1. \(i \leftarrow \text{Rand}(p, r)\)
2. \(A[i] \leftrightarrow A[r]\)
3. Return Partition \((A, p, r)\)

\[\text{RandQuicksort}(A, p, r)\]
1. If \(p < r\)
2. \(q \leftarrow \text{RandPartition}(A, p, r)\)
3. \(\text{RandQuicksort}(A, p, q-1)\)
4. \(\text{RandQuicksort}(A, q+1, r)\)

This is considered by some to be the algorithm of choice for sorting large inputs.
Ex.
MaxMin(A, p, r) finds the maximum and minimum elements in the subarray A[p...r].

\[\min(m_1, m_2) \]

1.) if \(m_1 < m_2 \)
2.) return \(m_1 \)
3.) return \(m_2 \)

\(\max(M_1, M_2) \) is similar. Each does one comparison.

MaxMin(A, p, r) (Pre: \(p \leq r \))

1.) if \(p = r \)
2.) return \(\langle A[p], A[p] \rangle \)
3.) \(q \leftarrow \left\lfloor \frac{p + r}{2} \right\rfloor \)
4.) \(\langle m_1, M_1 \rangle \leftarrow \text{MaxMin}(A, q + 1, r) \)
5.) \(\langle m_2, M_2 \rangle \leftarrow \text{MaxMin}(A, p, q) \)
6.) return \(\langle \min(m_1, m_2), \max(M_1, M_2) \rangle \)

Let \(T(n) \) denote the number of comparisons performed by MaxMin(A, p, r) on arrays of length \(n \).
Then

\[T(n) = \begin{cases}
0 & \text{if } n = 1 \\
T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + 2 & \text{if } n \geq 2
\end{cases} \]

Exercise:

Show that the exact solution is

\[T(n) = 2n - 2 \]

This is no better than the obvious iterative algorithm.

Exercise:

Design a divide-and-conquer algorithm which finds maximum and minimum in exactly \(\lceil \frac{2n}{3} \rceil - 2 \) comparisons. (Hint: Section 9.1 describes an iterative algorithm to do this.)
Example: The Selection Problem

The *ith* order statistic of an array $A[1\ldots n]$ consisting of n distinct elements is the i^{th} smallest element. Equivalently, the i^{th} order statistic is the unique element in A which is greater than exactly $i-1$ other elements (where $1 \leq i \leq n$).

e.g. $i = 1$ gives the minimum
 $i = n$ gives the maximum

The i^{th} order statistic is greater than or equal to exactly i elements of A.

Problem: Given $A[1\ldots n]$, where all elements are distinct, determine the i^{th} order statistic.

One approach would be to sort $A[1\ldots n]$, then return $A[i]$. In general this takes time $O(n \log n)$.

RandSelect is a randomized algorithm which finds the i^{th} order statistic in linear time, on average.
Recall that \texttt{RandPartition(A, p, r)} splits the subarray \texttt{A[p..r]} into two subarrays \texttt{A[p..q]} and \texttt{A[q+1..r]}

\texttt{A[p..(q-1)] \leq A[q] \leq A[(q+1)..r]}

\texttt{RandSelect(A, p, r, i)} (Pre: \(1 \leq i \leq r-p+1\))

1. \texttt{if } p = r
2. \texttt{return } A[p]
3. \texttt{q} \leftarrow \texttt{RandPartition(A, p, r)}
4. \texttt{k} \leftarrow q - p + 1 // \texttt{k} is length of \texttt{A[p..q]}
5. \texttt{if } k = i
6. \texttt{return } A[q]
7. \texttt{else if } i < k
8. \texttt{return } \texttt{RandSelect(A, p, q-1, i)}
9. \texttt{else}
10. \texttt{return } \texttt{RandSelect(A, q+1, r, i-k)}

\texttt{RandSelect} is similar in some respects to \texttt{RandQuicksort} and \texttt{RandBinarySearch}. Like \texttt{Quicksort}, it randomly splits the subarray \texttt{A[p..r]} in order to exploit a good average-case runtime. Like \texttt{BinarySearch}, it recurs on only one subarray. Unlike \texttt{BinarySearch}, we seek not an index, but an array element.
Let \(t(n) \) denote the average number of (array) comparisons by RandSelect \((A, \ell, n, i)\).

Assume that each permutation of \(A[1..n] \) is equally likely; hence the return value of RandPartition is equally likely to be any of the numbers \(1 \leq q \leq n \).

A priori \(t(n) \) depends on \(\ell \). We'll see that in fact it doesn't. Recall that RandPartition does \((n-1) \) comparisons. Thus

\[
\sum_{q=1}^{n} \left((n-1)P(i \leq q) t(q-1) + P(i > q) t(n-q) \right)
\]

\[
\frac{t(n)}{n}
\]

where

\[
P(i \leq q) = \frac{n-i}{n} \quad \text{and} \quad P(i > q) = \frac{i-1}{n}
\]

are the probabilities that \(q \) is in the range \(i < q \leq n \) and \(1 < q < i \) respectively. Thus

\[
t(n) = (n-1) + \frac{1}{n} \sum_{q=1}^{n} \left((n-1) t(q-1) + (i-1) t(n-q) \right)
\]

\[
= (n-1) + \frac{1}{n^2} \left[\sum_{q=1}^{n-1} t(q) + (n-1) \sum_{q=1}^{n-1} t(q) \right]
\]
\[t(n) = (n-1) + \frac{1}{n^2} (n-1 + i - 1) \sum_{q=1}^{n-1} t(q) \]

Therefore, \(t(n) \) does not depend on \(i \), as claimed earlier.

Observe that this recurrence is very similar to the one for the average run time of Quicksort.

Exercise
Show that \(t(n) = O(n) \).

Obviously, \(t(n) \geq n - 1 = \Omega(n) \). Prove that \(t(n) = O(n) \) by induction on \(n \).

Induction Hypothesis: \(\forall q \leq n-1 : t(q) \leq 2q \)

\[t(n) \leq (n-1) + \frac{1}{n^2} (n-1 + i - 1) \sum_{q=1}^{n-1} 2q \]

\[= (n-1) + \frac{1}{n^2} \cdot 2 \frac{n(n-1)}{2} \leq 2n \]

\[\uparrow \text{ prove} \]
Exercise
Find the exact solution to this recurrence.

Answer:
\[t(n) = (n-1) \left\{ 1 + \sum_{i=1}^{n-1} \frac{\lambda r^i (r-1)}{\lambda r^i n(n^2+n-1)} \right\} \]

where
\[\lambda_n = \prod_{k=2}^{n} \left(\frac{k}{k^2+k+1} \right) \]