Problems to be turned in:

1. (5 pts) Exercise 34.2-1 on page 1065 (Show GRAPH-ISOMORPHISM is in NP, see page 1171 for the definition of when graphs are isomorphic).

2. (5 pts) Assume that we have an a polynomial time algorithm for deciding whether or not a string is in the CIRCUIT-SAT language (see page 1072). Use this algorithm as a subroutine in a polynomial time algorithm that, when given the description of a satisfiable circuit, finds an assignment of boolean values to the inputs that causes the circuit to output the bit 1.

3. (10 pts) Consider the following MANY-DISJOINT-SETS decision problem.

 Given an integer \(n \), a set \(S \) of subsets of \(\{1, 2, \ldots, n\} \), and a bound \(k \), does \(S \) contain \(k \) mutually disjoint subsets?

 For example, if given the input: \(n = 4, S = \{\{1, 2, 3\}, \{1, 4\}, \{3, 4\}, \{2, 3\}\} \), and \(k = 2 \), then the answer is “yes” since there two subsets in \(S \) (\(\{1, 4\} \) and \(\{2, 3\} \)) that are disjoint. However, no three of the subsets in \(S \) are disjoint.

 Show that the language consisting of strings encoding “yes” instances of the MANY-DISJOINT-SETS problem is NP-complete. (Hint: there is a reduction from CLIQUE that is not too difficult).

Seven problems not to be turned in:

1. (22.2-6 in the text) Give an example of a (connected) directed graph \(G = (V, E) \), a source vertex \(s \in V \), and a set of tree edges \(E_\pi \) such that:

 1. for each \(v \in V \), the (simple) path from \(s \) to \(v \) using only tree edges in \(E_\pi \) is a shortest path from \(s \) to \(v \) in \(G \), and
 2. the edges \(E_\pi \) are never found by a BFS on \(G \) no matter how the adjacency lists of \(G \) are ordered.

2. (22.3-8 in the text) Give a counterexample to the following conjecture about a depth-first searches in an arbitrary directed graph \(G \).

 If \(G \) contains a path from \(u \) to \(v \) and \(u.d < v.d \) in the depth-first search, then \(v \) is a descendant of \(u \) in the depth-first forest produced by the DFS.
3. (34.1-6 on page 1061) Prove the class P, viewed as a set of languages, is closed under union, intersection, concatenation, complement, and Kleene star.

4. 22.2-1 on page 601 (BFS example)

5. 22.3-1 on page 610 (DFS edge types)

6. 22.3-2 on page 610 (DFS example)

7. Show that polynomial time reductions are transitive, i.e. if L_1, L_2, and L_3 are languages such that $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$, then $L_1 \leq_p L_3$. (This is a rephrasing of exercise 34.3-2).