Suppose $G = (V, E)$ is equipped with a non-negative weight function on edges $w : E \to \mathbb{R}_+$.\

Example

![Diagram of a graph with labeled edges and vertices]

- The weight of a spanning tree is the sum of the weight of its edges.

Problem

Determine a spanning tree of minimum weight in G.

We examine two famous greedy algorithms which solve this problem.

In what follows let $G = (V, E), |V| = n$.
Prim's Algorithm (23.2)

- Choose an initial vertex (which is a tree)
- Amongst all edges incident with the current tree whose addition would not create a cycle, choose one of minimum weight.
- Stop when no edges have been selected.

![Diagram](image)

$$W(T) = 18$$

Observe that at each stage of execution, Prim's algorithm maintains a tree since no cycles are created and only incident edges are added.

When this tree contains \(n-1 \) edges it must have \(n \) vertices (by previous theorem), hence it is a Spanning tree.

Theorem

This spanning tree has minimum possible weight.

(See book or TIFR CE 177 for proof.)
Kruskal's Algorithm (23.2)

- Choose an edge of minimum weight.
- Amongst all edges which do not create a cycle with previously selected edges, choose one of minimum weight.
- Stop when n-1 edges have been selected.

Ex.

\[
W(T) = 18
\]

Observe that at each stage of execution, Kruskal's Algorithm will create a forest (union of disjoint subgraphs) since no cycles are created.

When this forest contains n-1 edges, it must also have n vertices. (Any forest with n-1 edges has at least n vertices. This forest can contain no more than n vertices since it is a subgraph of G.)

Thus the resulting forest is connected (by previous theorem) and is a spanning tree in G.
THEOREM

The spanning tree with minimum weight among all spanning trees in G.

PROOF.
Let T be the spanning tree in G created by Kruskal's algorithm, and let S be any other spanning tree. We must show

\[w(T) \leq w(S) \]

Let \(e_1, e_2, \ldots, e_{n-1} \) be the edges of T in the order selected by Kruskal's algorithm. Since \(S \neq T \) there is a first edge \(e_k \) which is not in \(S \), i.e.

\[\{e_1, \ldots, e_{k-1}\} \subseteq E(S) \]
\[e_k \notin E(S) \]

Let \(H \) be the subgraph obtained by adding \(e_k \) to \(S \) : \(H = S + e_k \). By the tree-ness theorem \(H \) contains a unique cycle which includes \(e_k \), call it \(C \). Note \(C \) must contain an edge \(e \) of \(S \) which is not in \(T \), for otherwise \(C \) is contained in the acyclic \(T \).
Now remove e from H to obtain a subgraph R, which is connected since e belongs to a cycle in H.

$$R = H - e = S + e_k - e$$

Since R is connected and has $n-1$ edges, it is another spanning tree of G, by Treeness Theorem.

The nature of Kruskal's algorithm guarantees that $w(e_k) \leq w(e)$.

If e does not form a cycle with e_1, \ldots, e_{k-1} since $e_1, \ldots, e_{k-1}, e \notin E(S)$. Thus if $w(e) < w(e_k)$, then Kruskal would have chosen e on the kth iteration of the greedy loop instead of e_k.

Thus R is a spanning tree of G with one more edge in common with T than S, and satisfies $w(R) \leq w(S)$.

If $R = T$ we are done, otherwise we may perform this same construction with R in place of S.
i.e., construct another spanning tree R_2 with one more edge in common with T than R, and satisfying $W(R_1) \leq W(R)$.

Continuing in this fashion we construct a sequence of spanning trees which must eventually reach T:

$$W(T) \leq \ldots \leq W(R_1) \leq W(R) \leq W(S),$$

so $W(T) \leq W(S)$ as required.

MATRICES AND THE GREEDY ALGORITHM

A matrix is an abstract mathematical structure which generalizes many examples where a greedy strategy applies.
A **matroid** is an ordered pair \(M = (S, \mathcal{I}) \) satisfying:

1. \(S \) is a finite, non-empty set, and \(\mathcal{I} \subseteq 2^S \). The members of \(\mathcal{I} \) are called the **independent subsets** of \(S \).

2. **Hereditary Property**
 - If \(B \subseteq I \) and \(A \in \mathcal{I} \), then \(A \subseteq B \).

3. **Exchange Property**
 - If \(A \in \mathcal{I} \), \(B \in \mathcal{I} \), and \(|A| < |B| \), then there exists \(x \in B \setminus A \) such that \(A \cup \{x\} \in \mathcal{I} \).

Note that (2) implies that \(\emptyset \in \mathcal{I} \) (provided \(S \) is itself non-empty).

Example (Matrix Matroids)

Let \(D \) be a (rectangular) matrix and let \(S = \{ \text{rows of } D \} \), considered as vectors. Let

\[I = \{ \{ A \subseteq S \mid A \text{ is linearly independent} \} \} \]
Obviously S is finite and non-empty, and $T \subseteq D(S)$. Properties (1) and (2) are elementary facts of linear algebra.

Similarly we could let I be the columns of D.

Example (Graphical Matroid)

Let $G = (V, E)$ be an undirected graph.

Let $S = E$ and

$$
I = \{ A \subseteq S \mid \text{subgraph } (V, A) \text{ is acyclic} \}.
$$

(1) is clearly satisfied. (2) holds since any subset of an acyclic set of edges is acyclic. (By removing edges we cannot create cycles.)

We prove the exchange property (2):

Let $A, B \in I$ and suppose $|A| < |B|$. Then the forest (V, A) contains exactly $|V| - |A| - 1$ trees, and (V, B) contains $|V| - |B| - 1$ trees.

(If: suppose (V, A) contains m trees:

$$
T_i = (V_i, E_i), 1 \leq i \leq m, \text{ then } |E_i| = |V_i| - 1
$$

(Only if: suppose (V, B) contains m' trees...)}