1. (20 Points) Prove that if \(h_1(n) = \Theta(f(n)) \) and \(h_2(n) = \Theta(g(n)) \), then \(h_1(n)h_2(n) = \Theta(f(n)g(n)) \).

 Proof:
 We have:

 \[\exists \] positive \(a_1, b_1, n_1 \) such that \(\forall n \geq n_1: 0 \leq a_1 f(n) \leq h_1(n) \leq b_1 f(n) \)

 \[\exists \] positive \(a_2, b_2, n_2 \) such that \(\forall n \geq n_2: 0 \leq a_2 g(n) \leq h_2(n) \leq b_2 g(n) \)

 Define \(a = a_1 a_2, b = b_1 b_2 \) and \(n_0 = \max(n_1, n_2) \). Then \(a, b \) and \(n_0 \) are positive. If \(n \geq n_0 \), then both of the above inequalities are true. Upon multiplying these inequalities, we get

 \[\exists \] positive \(a, b, n_0 \) such that \(\forall n \geq n_0: 0 \leq a f(n)g(n) \leq h_1(n)h_2(n) \leq b f(n)g(n) \)

 showing that \(h_1(n)h_2(n) = \Theta(f(n)g(n)) \).

2. (20 Points) Use Stirling's formula to prove that \(\frac{(3n)!}{(n!)^3} = \Theta\left(\frac{27^n}{n}\right) \).

 Proof:

 \[\frac{(3n)!}{(n!)^3} = \frac{\sqrt{2\pi} \cdot 3n \cdot \left(\frac{3n}{e}\right)^{3n} \cdot \left(1 + \Theta\left(\frac{1}{3n}\right)\right)}{\left(\sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot \left(1 + \Theta\left(\frac{1}{n}\right)\right)\right)^3} \]

 \[= \frac{\sqrt{3}}{2\pi} \cdot \frac{1}{n} \cdot \frac{3^{3n} \cdot n^3 \cdot e^{-3n}}{n^{3n} \cdot e^{-3n}} \cdot \left(1 + \Theta\left(\frac{1}{3n}\right)\right)^3 \]

 \[= \frac{\sqrt{3}}{2\pi} \cdot \frac{27^n}{n} \cdot \left(1 + \Theta\left(\frac{1}{3n}\right)\right)^3 \]

 Therefore

 \[\frac{(3n)!}{(n!)^3} = \frac{\sqrt{3}}{2\pi} \cdot \frac{1 + \Theta\left(\frac{1}{3n}\right)}{\left(1 + \Theta\left(\frac{1}{n}\right)\right)^3} \rightarrow \frac{\sqrt{3}}{2\pi} \text{ as } n \rightarrow \infty \]

 Since \(0 < \frac{\sqrt{3}}{2\pi} < \infty \), it follows that \(\frac{(3n)!}{(n!)^3} = \Theta\left(\frac{27^n}{n}\right) \).
3. (20 Points) Define $T(n)$ by the recurrence

$$T(n) = \begin{cases}
0 & n = 1 \\
4T(\lfloor n/2 \rfloor) + 3n^2 & n \geq 2
\end{cases}$$

Determine a positive number c such that $T(n) \leq cn^2 \lg(n)$ for all $n \geq 1$, then present an induction proof of the preceding inequality.

Scratch work: (not necessary for full credit)

$$T(n) = 4T(\lfloor n/2 \rfloor) + 3n^2 \\
\leq 4c\lfloor n/2 \rfloor^2 \lg(\lfloor n/2 \rfloor) + 3n^2 \\
\leq 4c(n/2)^2 \lg(n/2) + 3n^2 \\
= cn^2 (\lg n - 1) + 3n^2 \\
= cn^2 \lg n - cn^2 + 3n^2 \\
= cn^2 \lg n$$ (upon choosing $c = 3$)

Claim: $T(n) \leq 3n^2 \lg(n)$ for all $n \geq 1$

Proof:

I. $T(1) \leq 3 \cdot 1^2 \cdot \lg(1)$ reduces to $0 \leq 0$, so the claim is true when $n = 1$.

II. Let $n > 1$. Assume for all k in the range $1 \leq k < n$ that $T(k) \leq 3k^2 \lg(k)$. We must show that $T(n) \leq 3n^2 \lg(n)$. Observe

$$T(n) = 4T(\lfloor n/2 \rfloor) + 3n^2 \\
\leq 4 \cdot 3\lfloor n/2 \rfloor^2 \lg(\lfloor n/2 \rfloor) + 3n^2 \quad \text{by the induction hypothesis with } k = \lfloor n/2 \rfloor \\
\leq 4 \cdot 3(n/2)^2 \lg(n/2) + 3n^2 \\
= 3n^2 (\lg n - 1) + 3n^2 \\
= 3n^2 \lg n - 3n^2 + 3n^2 \\
= 3n^2 \lg n$$

The result holds for all $n \geq 1$ by the 2nd PMI.

4. (20 Points) Use the Master Theorem to find a tight asymptotic bound for $T(n) = 15T(n/4) + n^2$.

Solution:

Compare n^2 to $n^{\log_4(15)}$. Observe $15 < 16 \Rightarrow \log_4(15) < 2 \Rightarrow \epsilon = 2 - \log_4(15) > 0$. Then $n^2 = \Omega(n^2) = \Omega(n^{\log_4(5)+\epsilon})$. Picking c in the range $15/16 \leq c < 1$ gives $15(n/4)^2 = (15/16)n^2 \leq cn^2$, establishing the regularity condition. By case (3) $T(n) = \Theta(n^2)$. ■
5. (20 Points) The following recursive algorithm determines whether an array is sorted. Variables B_1, B_2 and B_3 are Boolean, and \wedge represents the Logical And operator.

\[
\text{Sorted}(A, p, r) \quad \text{precondition:} \quad r \geq p
\]
1. if $r = p$
2. return TRUE
3. else
4. $q = \lfloor (p + r)/2 \rfloor$
5. $B_1 = \text{Sorted}(A, p, q)$
6. $B_2 = \text{Sorted}(A, q + 1, r)$
7. $B_3 = (A[q] \leq A[q + 1])$
8. return $(B_1 \wedge B_2 \wedge B_3)$

a. (10 Points) Use induction on $m = \text{length}(A[p \cdots r])$ to prove the correctness of the above algorithm, i.e. prove that $\text{Sorted}(A, p, r)$ returns TRUE if and only if $A[p \cdots r]$ is sorted in increasing order.

Proof:
I. Let $m = 1$. Then $\text{length}(A[p \cdots r]) = r - p + 1 = 1 \Rightarrow r = p$, and TRUE is returned on line 2 of the algorithm. Indeed, an array of length 1 is always sorted, so the algorithm returns a correct value. The base case is therefore established.
II. Let $m > 1$ and assume Sorted() returns a correct value on all sub-arrays of length less than m. We must show that Sorted() returns a correct value when run on any array of length m. Since $m > 1$, we have $m = r - p + 1 > 1 \Rightarrow r > p$, so line 2 is skipped and lines 4-8 are executed. Also

\[
p < r \Rightarrow p + r < 2r \Rightarrow \lfloor (p + r)/2 \rfloor < r \Rightarrow q < r
\]
\[\Rightarrow q - p + 1 < r - p + 1\]
\[\Rightarrow \text{length}(A[p \cdots q]) < m\]

and

\[
p < r \Rightarrow 2p < p + r \Rightarrow p < \frac{p + r}{2}
\]
\[\Rightarrow p < \lfloor (p + r)/2 \rfloor + 1 \Rightarrow p < q + 1
\]
\[\Rightarrow r - q < r - p + 1
\]
\[\Rightarrow \text{length}(A[q + 1 \cdots r]) < m\]

The induction hypothesis guarantees that lines (5) and (6) return correct values for sub-arrays $A[p \cdots q]$ and $A[q + 1 \cdots r]$. Observe $A[p \cdots r]$ is sorted in increasing order if and only if $A[p \cdots q]$ is sorted, $A[q + 1 \cdots r]$ is sorted and $A[q] \leq A[q + 1]$. Thus $A[p \cdots r]$ is sorted if and only if the value of the Boolean expression $B_1 \wedge B_2 \wedge B_3$ returned on line (8) is TRUE. Therefore, $\text{Sorted}(A, p, r)$ returns TRUE if and only if $A[p \cdots r]$ is sorted in increasing order, as required. ■

b. (10 Points) Let $T(n)$ denote the number of array comparisons performed by Sorted() on an array of length n. Write a recurrence relation for $T(n)$. Determine a tight asymptotic bound for $T(n)$.

Solution:
If $p = 1, r = n$, and $q = \lfloor (n + 1)/2 \rfloor$ then $\text{length}(A[1 \cdots q]) = \lfloor n/2 \rfloor$ and $\text{length}(A[q + 1 \cdots n]) = \lfloor n/2 \rfloor$. (This was an exercise stated in class.) Therefore $T(n)$ must satisfy the recurrence

\[T(n) = \begin{cases}
0 & n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lfloor n/2 \rfloor) + 1 & n \geq 2
\end{cases}\]
To apply the Master Theorem, we write this as \(T(n) = 2T(n/2) + 1 \). We compare \(1 = n^0 \) to \(n^{\log_2(2)} = n^1 \). Let \(\epsilon = 1 - 0 = 1 \). Then \(\epsilon > 0 \) and \(1 = O(n^0) = O(n^{\log_2(2)-\epsilon}) \), and by case (1) we have \(T(n) = \Theta(n) \).

Alternative Solution:

One can show directly that \(T(n) = n - 1 \) is an exact solution to this recurrence. First note that when \(n = 1 \), \(T(1) = 0 \). If \(n \geq 1 \) then

\[
\text{RHS} = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 \\
= (\lfloor n/2 \rfloor - 1) + (\lceil n/2 \rceil - 1) + 1 \\
= (\lfloor n/2 \rfloor + \lceil n/2 \rceil) - 1 \\
= n - 1 \\
= T(n) \\
= \text{LHS}
\]

so \(T(n) = n - 1 \) solves the recurrence, and \(T(n) = \Theta(n) \).