CMPS 201
Final Review Problems

Be sure to review all prior homework assignments, midterm exams, and their solutions. Review all examples covered in class.

1. Suppose $T(n)$ satisfies the recurrence $T(n) = 3T(n/4) + F(n)$, where $F(n)$ itself satisfies the recurrence $F(n) = 5F(n/9) + n^{3/4}$. Find a tight asymptotic bound for $T(n)$. Be sure to fully justify each use of the Master Theorem. (Hint: $\log_3(5) < 3/4 < \log_4(3)$.)

2. Let T be a k-ary tree with n leaves and height h. Prove that $h \geq \lceil \log_k(n) \rceil$. (Hint: Let $L(T)$ and $H(T)$ denote the number of leaves and the height (respectively) of the tree T, then proceed by induction on $h = H(T)$.)

3. Suppose you are given an unlimited supply of coins in each of the n denominations $d = (d_1, d_2, \ldots, d_n)$, and a number N of monetary units to be paid out using the least possible number of coins.

 a. Write a dynamic programming algorithm that takes as input the vector d and the number N, and returns the value of an optimal solution, i.e. the least number of coins necessary to pay N units, or returns ∞ if it is not possible to disburse N units using denominations d.
 b. Write a recursive procedure that, given the table of sub-instance solutions generated by the algorithm in (a), prints out a list of coins to be disbursed, i.e. print the optimum solution itself.

4. Given n objects with values $v = (v_1, v_2, \ldots, v_n)$ and corresponding weights $w = (w_1, w_2, \ldots, w_n)$, a thief wishes to steal a subset of the objects of maximum total value, and whose total weight does not exceed the capacity W of his knapsack.

 a. Write a dynamic programming algorithm that takes as input the vectors v and w and the number W, and returns the value of an optimal solution, i.e. the maximum value that can be stolen.
 b. Write a recursive algorithm that, given the table of sub-instance solutions generated by the algorithm in (a), prints out the optimum solution itself, i.e. prints out a list of which objects to steal.

5. State and prove a theorem the establishes that the principle of optimality holds for the Shortest-Path (SP) problem. (Input: a graph and two vertices (G, u, v). Output: the length of a shortest u-v path in G.) In other words, explain how and why a shortest path is composed of shortest paths.

6. Recall that $\{0, 1\}^*$ denotes the set of all bit-strings of any length. A language L is simply a collection of bit-strings, i.e. a subset $L \subseteq \{0, 1\}^*$. Let $A(x)$ be an algorithm whose input is a bit-string $x \in \{0, 1\}^*$, and whose output is 0 or 1.

 a. Define what it means for a language L to be decided in polynomial time by the algorithm $A(\cdot)$.
 b. Define the complexity class P. (Hint: recall P is a set of languages.)
 c. Let $A(x, y)$ be an algorithm whose input is two bit-strings $x, y \in \{0, 1\}^*$, and whose output is 0 or 1. The string x represents a problem instance, any y is called a certificate. Define what it means for a language L to be verified in polynomial time by $A(\cdot, \cdot)$.
 d. Define the complexity class NP. (Hint: again NP is a set of languages.)

7. Given languages $L_1, L_2 \in P$, prove that $L_1 \cap L_2 \in P$ and $L_1L_2 \in P$.
8. Show that any polynomial time algorithm for the optimization problem SP (defined in problem 5 above) can be converted to a polynomial time algorithm for the decision problem Path. (Input: a graph G, two vertices u, v and an integer k. Output: Yes if G contains a u-v path of length at most k, No otherwise.) Also show how to convert in the other direction, i.e. starting with a polynomial time algorithm for Path, construct a polynomial time algorithm for SP.

9. Recall the decision problems Hamiltonian Cycle (HC) and Travelling Salesman (TSP).

HC: Given a graph G, determine whether or not G contains a Hamiltonian cycle (a cycle that visits every vertex in G).

TSP: Given a complete graph K_n, a weight function $d : E(K_n) \to \mathbb{R}$, and a bound $b \geq 0$, determine whether or not K_n contains a Hamiltonian cycle of total weight no more than b.

Recall also the mapping $f : HC \to TSP$ that takes instances of HC to instances of TSP, defined as follows. Given a graph G with $|V(G)| = n$, identify $V(G)$ with $V(K_n)$, define $d : E(K_n) \to \mathbb{R}$ by

$$
 d(u, v) = \begin{cases}
 1 & \text{if } \{u, v\} \in E(G) \\
 2 & \text{if } \{u, v\} \notin E(G),
\end{cases}
$$

and let $b = n$.

a. Prove that if G is a Yes instance of HC, then $f(G)$ is a Yes instance of TSP.
b. Prove that if $f(G)$ is a Yes instance of TSP, then G is a Yes instance of HC.
c. Explain how $f(G)$ can be computed in polynomial time. (Make some assumption as to how G will be represented, such as adjacency-list, adjacency-matrix, or incidence-matrix.)