NP-Completeness (cont)

An algorithm accepts $e(i)$ if it answers YES
An algorithm rejects $e(i)$ if it answers NO

An algorithm accepts L in polynomial time if
$\exists c$ such that the algorithm accepts $\forall e(i) \in L$ with $|e(i)| = n$ within time $O(n^c)$ and does not accept any $e(i) \notin L$

An algorithm decides L in polynomial time if
$\exists c$ such that the algorithm accepts all $e(i) \in L$ within time $O(n^c)$ and rejects all $e(i) \notin L$ within time $O(n^c)$

NP-Completeness (cont)

Proof: (cont) Now suppose \exists an algorithm that accepts L in polynomial time, A.

Then $\exists c$ such that A accepts L in time $T_A(n) = O(n^c)$.

Modify A by adding a timer which expires after time $T_A(n)$ and make A reject when the timer expires if it hasn’t already accepted by then.

This new algorithm decides L in time $T_A(n) + 1 = O(n^c)$.

So \exists an algorithm that decides L in polynomial time.

QED

NP-Completeness (cont)

$P = \{\text{polynomially solvable concrete decision problems}\}$

$P = \{L \mid \exists \text{an algorithm that decides } L \text{ in polynomial time}\}$

Theorem

$P = \{L \mid \exists \text{an algorithm that accepts } L \text{ in polynomial time}\}$

Proof: If $L \in P$ then $\exists \text{an algorithm that decides } L \text{ in polynomial time}.$

This algorithm also accepts L in polynomial time.

NP-Completeness (cont)

PCP - a language which cannot be decided (undecidable)

Instance: n pairs of binary strings: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$

Question: Is there a sequence of indices i_1, i_2, \ldots, i_m

such that $x_{i_1} x_{i_2} \cdots x_{i_m} = y_{i_1} y_{i_2} \cdots y_{i_m}$?

Example: $(111, 1), (110, 11), (0, 000), (101, 011111), (010, 101) \ldots$
NP-Completeness (cont)

The class NP (non-deterministic polynomial time)

Traditional model for non-deterministic computation:
Non-deterministic Turing Machine (choice of moves)

Text (CLR): Certificates and verification algorithms

An algorithm $A(x,y)$, verifies x if there exists a y such that $A(x,y) = 1$.

$L = \{ x \mid \exists y \ A(x,y) = 1 \}$ is the language verified by $A(x,y)$

NP-Completeness (cont)

$3\text{SAT} \in \text{NP}$

Input: $\langle \phi, \bar{x} \rangle$ a formula and a truth assignment.
Output: $\phi(\bar{x})$, the formula’s value for the given truth assignment.

$A(\phi, \bar{x})$

for each clause of ϕ

flag$\leftarrow 0$

for each literal in the clause

if this literal is 1 under \bar{x} then flag$\leftarrow 1$
endfor

if flag=0 then return(0)
endfor

return(1)

NP-Completeness (cont)

$\text{CLIQUE} \in \text{NP}$

Input: $\langle G,k,V' \rangle$ a graph, an integer and a subset of vertices,

Output: 1 if V' is a clique of size $\geq k$ in G, and 0 otherwise.

$A(G,k,V')$

if $m<k$ then return(0)
for $i \leftarrow 1$ to $m-1$
for $j \leftarrow i+1$ to m

if $(v_i,v_j) \notin E$ then return(0)
endfor
endfor
return(1)
NP-Completeness (cont)

P \subseteq NP
What can be decided in polynomial time, can also be verified in polynomial time.

\text{co – NP} = \{ \overline{L} \mid L \in \text{NP} \}

\text{3SAT} = \{ \phi \mid \phi \text{ is a formula which is not satisfiable} \}
(Assume any binary string which is not a legal encoding of a formula represents the formula \(F \).)

\text{3SAT} \in \text{co – NP}

COMPOSITE = \{ x \mid x \text{ is an integer and not prime} \}
\text{COMPOSITE} \in \text{NP}
(The certificate is a non-trivial factor of \(x \).)

\text{PRIMES} = \text{COMPOSITE} \in \text{co-NP}
But it can also be shown that \text{PRIMES} \in \text{NP}

So \text{PRIMES} \in \text{co-NP} \cap \text{NP}

NP-Completeness (cont)

\text{co – P} = \{ \overline{L} \mid L \in \text{P} \} = \text{P}
If \(P = \text{NP} \), then \text{co-NP} = \text{co-P} = \text{P} = \text{NP}.
If \text{co-NP} \neq \text{NP} \), then \(P \neq \text{NP} \).
4 open possibilities

NP = \text{co-NP} = \text{P}
NP = \text{co-NP}
NP = \text{co-NP}
NP = \text{co-NP}

If \(L \) is \text{NP-complete} if

1) \(L \in \text{NP} \)
2) for all \(L' \in \text{NP} \), \(L' \leq_p L \) \quad \text{(NP-hard)}

If \(L \) is \text{NP-complete}, then \(L \) is “no easier” than anything in \text{NP}.
If \(L \) is \text{NP-complete} and \(L \in \text{P} \) then \(\text{P} = \text{NP} \),

If \(L \) is \text{NP-complete} and \(P \neq \text{NP} \), then \(L \notin \text{P} \).
NP-Completeness (cont)

How to show a problem is NP-complete?

Cook’s Theorem \(3\text{SAT}\) is NP-complete.

Proof: Already showed \(3\text{SAT} \in \text{NP}\). For second requirement take a non-deterministic Turing Machine which accepts \(L’\) in polynomial time and any input \(x\), and convert it to a 3CNF formula which is satisfiable if and only if the Turing Machine would accept \(x\) within the polynomial time bound.

NP-Completeness (cont)

Text: **CIRCUIT-SAT** is NP-complete.

Proof sketch: Show that a verification algorithm and any input \(x\) can be converted it to a boolean circuit which is satisfiable if and only if the verification algorithm would verify \(x\) within a polynomial time bound.

The first proof that a problem is NP-hard was hard.

Subsequent proofs can use the following lemma.

Lemma

If \(L’ \leq_p L\) and \(L’\) is NP-hard, then \(L\) is NP-hard.

NP-Completeness (cont)

Lemma

If \(L’ \leq_p L\) and \(L’\) is NP-hard, then \(L\) is NP-hard.

Proof: \(\forall L’ \in \text{NP}, L’ \leq_p L’\) since \(L’\) is NP-hard.

Then \(L’ \leq_p L’ \leq_p L\), so \(L’ \leq_p L\).

So \(L\) is NP-hard.

QED

Corollary

If \(L \in \text{NP} \) and \(L’ \leq_p L\) and \(L’\) is NP-hard, then \(L\) is NP-complete.

NP-Completeness (cont)

To show a problem \(Q\) is NP-complete:

1) show the problem is in \(\text{NP}\).

 Come up with a polynomial verification algorithm.

2) show the problem is NP-hard.

 Take a known NP-hard problem and reduce it to \(Q\).
NP-Completeness (cont)

3SAT, CLIQUE, VERTEX-COVER, and SUBSET-SUM are NP-complete.

Proof: Already showed 3SAT and CLIQUE are in NP.

VERTEX-COVER is in NP.

\[A(G,k,V') \quad V' = \{v_1, v_2, \ldots, v_m\} \]

if \(m > k \) then return(0)
for each edge \(e = (v_i,v_j) \in E \)
 if \(v_i \notin V' \) and \(v_j \notin V' \) then return(0)
endfor
return(1)

NP-Completeness (cont)

Proof: (cont)

Using previous reductions,

since CIRCUIT - SAT \(\leq_p \) 3SAT. 3SAT is NP-hard.

since 3SAT \(\leq_p \) CLIQUE. CLIQUE is NP-hard.

since CLIQUE \(\leq_p \) VERTEX - COVER

VERTEX-COVER is NP-hard.

since VERTEX - COVER \(\leq_p \) SUBSET - SUM

SUBSET-SUM is NP-hard.

QED

If anyone of these problems is in \(P \), then \(P = NP \).

0-1 KNAPSACK

Instance: A \(n \) items where item \(i \) has weight \(w_i \) and cost \(c_i \) and two integers \(W \) and \(C \).

Question: Is there a subset \(J \) of \(\{1, 2, \ldots, n\} \) such that

\[\sum_{j \in J} w_j \leq W \quad \text{and} \quad \sum_{j \in J} c_j \geq C \]?

0-1 KNAPSACK is NP-complete.
NP-Completeness (cont)

0-1 KNAPSACK is NP-complete.

Proof: First show that **0-1 KNAPSACK** is in **NP**.

\[
A(W[], C[], W, C, J)
\]

\[
A \leftarrow 0 \quad B \leftarrow 0
\]

for each \(j \) in \(J \)

\[
A \leftarrow A + W[j]
\]

\[
B \leftarrow B + C[j]
\]

endfor

if \(A > W \) or \(B < C \) then return(0)
return(1)

NP-Completeness (cont)

Proof: (cont) Now show that **0-1 KNAPSACK** is NP-hard.

SUBSET-SUM is a known NP-hard problem.

SUBSET-SUM \(\leq_p 0 \text{-}1 \text{ KNAPSACK}

Step 1: Construct \(f : \{(S,t)\} \rightarrow \{(W[], C[], W, C)\} \)

Given \((S,t)\) where \(S = \{s_1, s_2, \ldots, s_k\} \),

let \(n = k \), \(w_i = c_i = s_i \), and \(W = C = t \).