NP-Completeness

An abstract problem is a binary relation on a set of instances and a set of solutions

<table>
<thead>
<tr>
<th>Problem</th>
<th>Instance</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>SORTING</td>
<td>Array of keys</td>
<td>(\pi), permutation of indices that gives sorted order</td>
</tr>
<tr>
<td>SHORTEST-PATH</td>
<td>A graph (G=(V,E)) and 2 vertices</td>
<td>The length of the shortest path between the 2 vertices</td>
</tr>
<tr>
<td>CLIQUE</td>
<td>A graph (G=(V,E))</td>
<td>The size of the largest clique in (G)</td>
</tr>
<tr>
<td>SATISFIABILITY</td>
<td>A boolean formula (\varphi())</td>
<td>A truth assignment for (\varphi()) which satisfies it (makes it evaluate to True) or nil</td>
</tr>
</tbody>
</table>

NP-Completeness (cont)

An algorithm for an abstract problem is a mapping which is a subset of the problem (relation)

- **SORTING**
 \[A_{\text{sorting}} : \{\text{Array of keys}\} \rightarrow \{\pi, \text{permutation of indices}\} \]

An abstract decision problem is an abstract problem whose solution set is \{Yes, No\} (or \{1, 0\})

A decision problem is specified by giving the set of instances and a Yes/No question.

NP-Completeness (cont)

An abstract problem’s algorithm can be used to solve the related decision problem directly.

- **CLIQUE**

\[G=(V,E), k \text{Algorithm for CLIQUE decision problem} \]

\[G=(V,E), k \text{Algorithm for CLIQUE optimization problem} \]

Yes/No
NP-Completeness (cont)

A decision problem’s algorithm can be used to solve the related abstract optimization problem using a search method on the solution space.

\[\begin{align*}
\text{min} & \leftarrow 1 \\
\text{max} & \leftarrow |V| + 1 \\
\text{while} \ (\text{min} < \text{max} - 1) \\
& \quad \text{mid} \leftarrow (\text{max} - \text{min}) / 2 \\
& \quad \text{If} \ (G \text{ has a clique of size} \geq \text{mid}) \\
& \quad \quad \text{then} \ \text{min} \leftarrow \text{mid} \\
& \quad \quad \text{else} \ \text{max} \leftarrow \text{mid} \\
\text{endwhile} \\
\text{return} \ (\text{min})
\end{align*}\]

NP-Completeness (cont)

Encodings

Complexity of a problem can vary depending on the encoding since complexity is measured as a function of the input size.

Input encoding can be artificially padded or contain the solution to make the complexity appear smaller.

A concrete problem has as its instance set the set of binary strings.

An algorithm solves a concrete problem in \(O(T(n))\) time if it always produces the solution within time \(O(T(n))\) where \(n\) is the length of the binary input string.

NP-Completeness (cont)

Encodings

A concrete problem is polynomially solvable if there is an algorithm which solves it in time \(O(n^k)\) for some constant \(k\).

\[\mathbb{P} = \{\text{polynomially solvable concrete decision problems}\}\]

\[e(\text{SORTING}), e(\text{SHORTEST-PATH}) \in \mathbb{P}\]

\[e(\text{CLIQUE}), e(\text{SATISFIABILITY}) \in \mathbb{P}\]

Can different encodings of an abstract decision problem affect membership in \(\mathbb{P}\)?

NP-Completeness (cont)

An encoding of an abstract decision problem.

\(e : I \rightarrow \{0,1\}^+\) an encoding of an abstract decision problem.

Two encodings \(e_1\) and \(e_2\) of an abstract decision problem are polynomially related if there exist functions \(f_{12}\) and \(f_{21} : \{0,1\}^+ \rightarrow \{0,1\}^+\) such that

\[\forall \text{instance } i, \ f_{12}(e_1(i)) = e_2(i) \text{ and } f_{21}(e_2(i)) = e_1(i)\]

and \(f_{12}\) and \(f_{21}\) are polynomial time computable.

Prevents padding of input, unary encodings and inclusion of solutions (unless solution can be found in polynomial time.)
NP-Completeness (cont)

Lemma If Q is an abstract decision problem with two encodings e_1 and e_2 that are polynomially related, then

$$e_1(Q) \in P \iff e_2(Q) \in P$$

Proof:

If $e_1(Q) \in P$, then $e_2(Q) \in P$ for all Q such that $L_1 \leq_p L_2$ and e_1 is polynomial time reducible to e_2.

$e_1(Q) \in P \Rightarrow e_2(Q) \in P$

For Algorithm L_1:

1. L_1 is polynomial time reducible to L_2
2. Construct $f : \{0,1\}^* \rightarrow \{0,1\}^*$ mapping instances of L_1 to L_2
3. Show that $x \in L_1 \iff f(x) \in L_2$

In terms of abstract decision problems, this means an instance of Q_1 can be converted to an instance of Q_2 in polynomial time so that the answer (Yes or No) is the same for both instances.
NP-Completeness (cont)

3SAT (or 3CNF-SAT)

Instance: A boolean formula ϕ in conjunctive normal form in which each clause has exactly 3 distinct literals.

Question: Can this formula ϕ be satisfied? (Is there an assignment of values to its variables that makes it evaluate to 1?)

Example of construction:

$$
\phi = (x_1 \lor x_2 \lor \overline{x}_3)(\overline{x}_1 \lor x_1 \lor x_3)(x_2 \lor \overline{x}_2 \lor x_4)
$$

Let ϕ_1 be satisfiable

$$
\phi_2 = (x_1 \lor x_2 \lor x_3)(\overline{x}_1 \lor x_1 \lor x_3)(\overline{x}_2 \lor x_2 \lor \overline{x}_3)
$$

ϕ_2 is not satisfiable

3SAT \leq_p CLIQUE

Step 1: Construct $f : \{\phi \mid 3\text{SAT formula} \} \rightarrow \{(G,k)\}$

Given $\phi = C_1 C_2 \cdots C_m$ where $C_r = (l_1^r \lor l_2^r \lor l_3^r)$

Let $G = (V,E)$ where $V = \bigcup_{r=1}^{m} \{v_1^r, v_2^r, v_3^r\}$

$$
E = \{(v_i^r, v_j^s) \mid r \neq s \text{ and } l_i^r \neq \overline{l_j^s}\}
$$

Let $k = m$

3SAT \leq_p CLIQUE

Step 2: Show that $x \in L_{3\text{SAT}} \iff f(x) \in L_{\text{CLIQUE}}$

ϕ is satisfiable $\iff f(\phi) = (G,k)$ where G has a clique of size $\geq k$

Proof: Suppose ϕ is satisfiable.

Then $\exists \overline{x}$ such that $\phi(\overline{x}) = 1$.

Under \overline{x} each clause of ϕ has at least one literal whose value is 1.

From each clause $C_r = (l_1^r \lor l_2^r \lor l_3^r)$ of ϕ pick a literal l_i^r whose value is 1 under \overline{x}.
NP-Completeness (cont)

3SAT \(\leq_p \text{ CLIQUE} \) \hspace{1cm} \text{Proof : (continued)}

Let \(V' = \{ v_1', v_2', \ldots, v_m' \} \) be the \(m \) vertices corresponding to the \(m \) literals \(l_i' \), just picked.

No pair of vertices of \(V' \) correspond to literals \(x_i \) and \(\overline{x}_j \) since all of the literals corresponding to \(V' \) are 1 under \(\overline{x} \).

Each pair of vertices of \(V' \) share an edge since they belong to different clauses and are not the negation of each other.

\(V' \) is a clique of size \(m \).

\(f(\phi) = (G, k) \) where \(G \) has a clique of size \(\geq k = m \)

NP-Completeness (cont)

3SAT \(\leq_p \text{ CLIQUE} \) \hspace{1cm} \text{Proof : (continued)}

Now suppose \(f(\phi) = (G, k) \) and \(G \) has a clique of size \(\geq k = m \)

Let \(V' \) be a clique of size \(\geq m \) in \(G \).

Since vertices from the same clause do not share edges \(V' \) must have exactly \(m \) vertices one from each clause.

The \(m \) literals corresponding to \(V' \) do not contain both the negated and unnegated form of a variable since their corresponding vertices in \(V' \) would not share an edge.

NP-Completeness (cont)

3SAT \(\leq_p \text{ CLIQUE} \) \hspace{1cm} \text{Proof : (continued)}

Construct a truth assignment \(\overline{x} \) for \(\phi \) by setting variable \(x_i = 1 \) if \(x_i \) appears unnegated in the literals corresponding to \(V' \) and \(x_i = 0 \) otherwise.

By construction all literals corresponding to \(V' \) are 1 under the truth assignment \(\overline{x} \).

Since each clause of \(\phi \) contains a literal corresponding to a vertex in \(V' \), \(\phi(\overline{x}) = 1 \).

\(\phi \) is satisfiable. \hspace{1cm} \text{QED}

NP-Completeness (cont)

3SAT \(\leq_p \text{ CLIQUE} \) \hspace{1cm} \text{Step 3: Show that} f is computable in polynomial time.

If \(\phi \) has \(m \) clauses and \(n \) variables, then \(f(\phi) = (G, m) \) where \(G \) has \(3m \) vertices and at most \(9m(m-1)/2 \) edges.

Whether two vertices of \(G \) share an edge or not can be determined by inspection of \(\phi \).

\(f \) is computable in polynomial time.

3SAT \(\leq_p \text{ CLIQUE} \) has been shown.