Lower bounds for Sorting
A bound on the complexity of a problem is a bound on any algorithm that solves the problem

Techniques:
- Decision Tree Model
 for comparison based algorithms (i.e. sorting)
- Adversary Argument
 for selection problems
- Reduction
 show a problem solves another problem with a known lower bound

Decision Tree Model of Computation
Outcomes of comparisons determine algorithm branching
Keys are only used in comparisons (no indexing)

If by varying keys m outcomes are possible then the Decision Tree must have at least m leaves

Decision Tree Model of Computation (cont)

Any comparison-based sorting algorithm requires $\Omega(n \lg n)$ comparisons in the worst-case.

Proof: Let A be any comparison-based sorting algorithm.
- Let T be the decision tree corresponding to A.
- There are $n!$ outcomes of sorting n keys.
- T must have at least $n!$ leaves.
- A tree with k leaves has height at least $\lg k$.
- T has height at least $\lg n! = \Theta(n \lg n)$.
- A makes at least $\Omega(n \lg n)$ comparisons in the worst-case.

QED

Decision Tree Model of Computation (cont)

Any comparison-based sorting algorithm requires $\Omega(n \lg n)$ comparisons on average.

Proof: Let A be any comparison-based sorting algorithm.
- Let T be the decision tree corresponding to A.
- There are $n!$ outcomes of sorting n keys.
- Assume all $n!$ outcomes are equally probable.
- Expected number of comparisons is:
 $$\sum_{l \in \text{leaves}} \frac{1}{n!} \cdot \text{depth}(l) = \frac{1}{n!} \cdot (\text{external path length of } T)$$
Decision Tree Model of Computation (cont)

Proof: (continued)

Let \(D(m) = \) minimum external path length of any tree with \(m \) leaves.

\[
D(m) = \min_{1 \leq k < m} [D(m-k) + D(k) + m]
\]

Show \(D(m) \geq m \lg m \) by substitution method.

\[
\sum_{l \in L(T)} \frac{1}{n!} \cdot \text{depth}(l) \geq \frac{1}{n!} \cdot (n! \lg n!) = \lg n! = \Theta(n \lg n)
\]

Expected number of comparisons is \(\Omega(n \lg n) \).

QED