Today’s Lecture

• Designing relational schemas
 – Anomalies caused by data redundancies
 – Functional Dependencies
 – Reasoning about FDs
 – Normal Forms

Recommended Readings

• Chapter 19
 – All sections up to and including Section 19.4
• Silberschatz, Korth, Sudarshan
 – Section 7.3.4
Schema design

• Recall that conceptual database design from ER diagrams gives
 – A set of relation schemas
 – A set of integrity constraints

• But they are not good enough. Why?
 – Integrity constraints are usually not taken into full account in ER designs

• Typical schema design steps
 – Conceptual database design (through the use of ER diagrams)
 – Schema Refinement through the use of ICs
 – Typically performance criteria and workload information are also taken into account. Redundancy vs. Efficiency tradeoffs

Example

• If we know that rank determines the salary scale, which is a better design? Why?

• Employee(eid, name, addr, rank, salary-scale)

• Employee(eid, name, addr, rank)
• Salary-Scale(rank, salary-scale)
Lots of Duplicates

<table>
<thead>
<tr>
<th>eid</th>
<th>name</th>
<th>addr</th>
<th>rank</th>
<th>salary-scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>34-133</td>
<td>Jane</td>
<td>Elm St.</td>
<td>6</td>
<td>70-90</td>
</tr>
<tr>
<td>33-112</td>
<td>Hugh</td>
<td>Pine St.</td>
<td>3</td>
<td>30-40</td>
</tr>
<tr>
<td>26-002</td>
<td>Gary</td>
<td>Elm St.</td>
<td>4</td>
<td>35-50</td>
</tr>
<tr>
<td>51-994</td>
<td>Ann</td>
<td>South St.</td>
<td>4</td>
<td>35-50</td>
</tr>
<tr>
<td>45-990</td>
<td>Jim</td>
<td>Main St.</td>
<td>6</td>
<td>70-90</td>
</tr>
<tr>
<td>98-762</td>
<td>Paul</td>
<td>Walnut St.</td>
<td>4</td>
<td>35-50</td>
</tr>
</tbody>
</table>

- Lots of duplicate information
 - Employees who have the same rank have the same salary scale

Update Anomaly

<table>
<thead>
<tr>
<th>eid</th>
<th>name</th>
<th>addr</th>
<th>rank</th>
<th>salary-scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>34-133</td>
<td>Jane</td>
<td>Elm St.</td>
<td>6</td>
<td>70-90</td>
</tr>
<tr>
<td>33-112</td>
<td>Hugh</td>
<td>Pine St.</td>
<td>3</td>
<td>30-40</td>
</tr>
<tr>
<td>26-002</td>
<td>Gary</td>
<td>Elm St.</td>
<td>4</td>
<td>35-50</td>
</tr>
<tr>
<td>51-994</td>
<td>Ann</td>
<td>South St.</td>
<td>4</td>
<td>35-50</td>
</tr>
<tr>
<td>45-990</td>
<td>Jim</td>
<td>Main St.</td>
<td>6</td>
<td>70-90</td>
</tr>
<tr>
<td>98-762</td>
<td>Paul</td>
<td>Walnut St.</td>
<td>4</td>
<td>35-50</td>
</tr>
</tbody>
</table>

- Update anomaly
 - If one copy of salary scale is changed, all copies of salary scale (of the same rank) have to be changed
Insertion Anomaly

<table>
<thead>
<tr>
<th>eid</th>
<th>name</th>
<th>addr</th>
<th>rank</th>
<th>salary-scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>34-133</td>
<td>Jane</td>
<td>Elm St.</td>
<td>6</td>
<td>70-90</td>
</tr>
<tr>
<td>33-112</td>
<td>Hugh</td>
<td>Pine St.</td>
<td>3</td>
<td>30-40</td>
</tr>
<tr>
<td>26-002</td>
<td>Gary</td>
<td>Elm St.</td>
<td>4</td>
<td>35-50</td>
</tr>
<tr>
<td>51-994</td>
<td>Ann</td>
<td>South St.</td>
<td>4</td>
<td>35-50</td>
</tr>
<tr>
<td>45-990</td>
<td>Jim</td>
<td>Main St.</td>
<td>6</td>
<td>70-90</td>
</tr>
<tr>
<td>98-762</td>
<td>Paul</td>
<td>Walnut St.</td>
<td>4</td>
<td>35-50</td>
</tr>
</tbody>
</table>

• Insertion anomaly
 – How can we store a new rank and salary scale information if no employee has that rank?
 – Use NULLS?

Deletion Anomaly

<table>
<thead>
<tr>
<th>eid</th>
<th>name</th>
<th>addr</th>
<th>rank</th>
<th>salary-scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>34-133</td>
<td>Jane</td>
<td>Elm St.</td>
<td>6</td>
<td>70-90</td>
</tr>
<tr>
<td>33-112</td>
<td>Hugh</td>
<td>Pine St.</td>
<td>3</td>
<td>30-40</td>
</tr>
<tr>
<td>26-002</td>
<td>Gary</td>
<td>Elm St.</td>
<td>4</td>
<td>35-50</td>
</tr>
<tr>
<td>51-994</td>
<td>Ann</td>
<td>South St.</td>
<td>4</td>
<td>35-50</td>
</tr>
<tr>
<td>45-990</td>
<td>Jim</td>
<td>Main St.</td>
<td>6</td>
<td>70-90</td>
</tr>
<tr>
<td>98-762</td>
<td>Paul</td>
<td>Walnut St.</td>
<td>4</td>
<td>35-50</td>
</tr>
</tbody>
</table>

• Deletion anomaly
 – If Hugh is deleted, how can we retain the rank and salary scale information?
 – Use NULLS?
What is a good design?

• Intuitively, salary scale is dependent only on rank and therefore, making the associations between employee information such as name, addr with salary-scale is unnatural and causes redundancy.

• Based on the constraints given, we would like to refine the schema so that such redundancies cannot occur.

• However, sometimes we may choose to live with redundancy in order to improve query performance. Ultimately, a good design is depends on the query workload.

Functional Dependencies

• The information that rank determines salary-scale is a type of integrity constraint known as functional dependencies.

• Functional dependencies can help us detect anomalies that may exist in a given schema.

• The FD rank \rightarrow salary-scale suggests that Employee(eid, name, addr, rank, salary-scale) should be decomposed into two relations:
 – Employee(eid, name, addr, rank)
 – Salary-Scale(rank, salary-scale).
Meaning

• We have seen a kind of functional dependency before
 – Emp(ssn, name, addr) (Key)
 – If two tuples agree on the ssn value, then they must also agree on the name and address values. (ssn → name, addr)
• Let R be a relation schema. A functional dependency (FD) is an integrity constraint of the form
 \[X \rightarrow Y \]
 where X and Y are non-empty subsets of attributes of R.
• A relation instance R of R satisfies the FD \(X \rightarrow Y \) if
 for every pair of tuples t and t’ in R, if \(t.X = t’.X \), then \(t.Y = t’.Y \)

\[\text{Denotes the X value(s) of tuple t, i.e., project t on the attributes in X. Alternatively, you can write as } t[X] \]

Meaning

• \(X \rightarrow Y \) (“X functionally determines Y”)
 – If two tuples agree on the X attributes, they must also agree on the Y attributes
 – The above must hold for every possible pair of tuples in a relation R if R satisfies \(X \rightarrow Y \)
 – (see next picture)
• An FD is a statement about all possible legal instances of a schema. We cannot look at an instance to determine which FDs hold (although we can tell which FDs are not satisfied)
Illustration of a FD

• Relation Schema R with the FD $A_1, \ldots, A_m \rightarrow B_1, \ldots, B_n$ where $\{A_1, \ldots, A_m, B_1, \ldots, B_n\} \subseteq \text{attributes}(R)$

$$
\begin{array}{ccc}
A_1 & A_2 & \ldots & A_m & B_1 & \ldots & B_n & \text{the rest of the attributes in } R, \text{ if any} \\
\hline
\text{t} & \text{xxxxxxxx} & \text{yyyyyyyy} & \text{zzzzzzzzzzzzzzzzzzzzzzzzzzz} \\
\text{t'} & \text{xxxxxxxx} & \text{yyyyyyyy} & \text{wwwwwwwwwwwwwwwwwwwwwwww} \\
\end{array}
$$

The actual values do not matter but they cannot be the same

Example

• Emp(ssn, name, addr)
• If $X \rightarrow Y$ and Y is all the attributes in R, then X is a superkey of R.
 - ssn, name \rightarrow ssn, name, addr
• If $X \rightarrow Y$, Y is all the attributes in R, and X is minimal, then X is the key of R
 - ssn \rightarrow ssn, name, addr
• Other “trivial” FDs
 - addr \rightarrow addr
 - name, addr \rightarrow addr
Example

- But an FD is more general than a key constraint
- AB → C (note that AB is not a key or superkey of the relation)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td>d1</td>
</tr>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td>d2</td>
</tr>
<tr>
<td>a1</td>
<td>b2</td>
<td>c2</td>
<td>d2</td>
</tr>
<tr>
<td>a2</td>
<td>b1</td>
<td>c3</td>
<td>d1</td>
</tr>
<tr>
<td>a2</td>
<td>b1</td>
<td>c3</td>
<td>d2</td>
</tr>
</tbody>
</table>

Reasoning about FDs

- R(A,B,C,D,E)
- Suppose A → C and C → E, is it also true that A → E?

- Given any instance that satisfies A → C and C → E, this means that
 - For any two tuples, if they agree on the A value, they also agree on the C value (by A → C)
 - If two tuples agree on the C value, they also agree on the E value (by C → E)
 - Therefore, for any two tuples, if they agree on the A value, they agree on the E value. A → E
Implication of FDs

• An FD F is implied by a given set \mathcal{F} of FDs (or “\mathcal{F} implies F”) if for every instance that satisfies \mathcal{F}, F is also satisfied
 Notation: $\mathcal{F} \models F$

• Note that it is not sufficient if only for some instance that satisfies \mathcal{F}, F is also satisfied

• How can we determine whether \mathcal{F} implies F?

Armstrong’s Axioms

• Let X, Y, and Z denote sets of attributes over a relation schema R

 • Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 ssn, name \rightarrow name
 – FDs in this category are called trivial FDs

 • Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 ssn, name, addr \rightarrow name addr

 • Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
 ssn \rightarrow rank and rank \rightarrow sal-scale

 Then $ssn \rightarrow$ sal-scale
Additional Rules

- **Union**: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
- **Decomposition**: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

- These rules are not essential (they can be derived) but useful
- **Proof of Union Rule**:
 - $X \rightarrow Z$ implies $XY \rightarrow YZ$ (augmentation)
 - $X \rightarrow Y$ implies $X \rightarrow XY$ (augmentation)
 - Therefore, $X \rightarrow YZ$ (transitivity)

- **Proof of Decomposition Rule**:
 - $YZ \rightarrow Y$ (reflexivity)
 - $YZ \rightarrow Z$ (reflexivity)
 - Therefore, $X \rightarrow Y$ and $X \rightarrow Z$ (transitivity)

- We use the notation $\mathcal{F} \vdash F$ to mean that F can be derived from \mathcal{F} using Armstrong's axioms

- **Pseudotransitivity**: If $X \rightarrow Y$ and $WY \rightarrow Z$, then $XW \rightarrow Z$
- Try to prove this!
Armstrong's Axioms

- **Completeness**: If a set \mathcal{F} of FDs implies F, then F can be derived from \mathcal{F} by applying Armstrong's axioms.

 If $\mathcal{F} \vdash F$, then $\mathcal{F} \vdash F$

- **Soundness**: If F is derived from a set \mathcal{F} of FDs through Armstrong's axioms, then \mathcal{F} implies F.

 If $\mathcal{F} \vdash F$, then $\mathcal{F} \vdash F$

- In other words, Armstrong's axioms derive exactly all the FDs that should hold under \mathcal{F}.

- Still, how can we decide if \mathcal{F} implies F?

Closure of FDs

- \mathcal{F}^+: The set of all FDs implied by a given set \mathcal{F} of FDs. Also called the closure of \mathcal{F}.

- To decide if \mathcal{F} implies F, compute \mathcal{F}^+ and check if an FD $F \in \mathcal{F}^+$.

- Compute \mathcal{F}^+ for the set \{ $A \rightarrow B$, $B \rightarrow C$ \} of FDs.

- **Trivial dependencies**
 - $A \rightarrow A$, $B \rightarrow B$, $C \rightarrow C$, $AB \rightarrow A$, $AB \rightarrow B$, $BC \rightarrow B$, $BC \rightarrow C$, $AC \rightarrow A$, $AC \rightarrow C$, $ABC \rightarrow A$, $ABC \rightarrow B$, $ABC \rightarrow C$

- **Augmentation & transitivity (non-trivial dependencies)**
 - $AC \rightarrow B$, $AB \rightarrow C$

- **Transitivity**
 - $A \rightarrow C$

Expensive and tedious!
Attribute Closure

- Let X be a set of attributes
- Attribute closure X^+ with respect to a set \mathcal{F} of FDs is the set of all attributes A such that $X \rightarrow A$ is derivable from \mathcal{F}

Input: A set of attributes X and a set of FDs \mathcal{F}

Output: X^+

1. $C = X$; // initialize C to the set X
2. repeat until no change in C
 - if there is an FD $U \rightarrow V$ in \mathcal{F} such that $U \subseteq C$, then $C = C \cup V$

Example

- With $\mathcal{F} = \{ A \rightarrow B, B \rightarrow C \}$
- Compute A^+
 - Closure = $\{ A \}$
 - Closure = $\{ A, B \}$ (due to $A \rightarrow B$)
 - Closure = $\{ A, B, C \}$ (due to $B \rightarrow C$)
 - Closure = $\{ A, B, C \}$
 - no change, stop
Attribute Closure

- Prove that the algorithm indeed computes X^+
 - Show that for any attribute $A \in X^+$, $X \rightarrow A$ is derivable from \mathcal{F}
 - Show if $X \rightarrow A$ is derivable from \mathcal{F}, $A \in X^+$

- To determine if an FD $X \rightarrow Y$ is implied by \mathcal{F}, compute X^+ and check if $Y \subseteq X^+$.

- Notice that attribute closure is less expensive to compute
- Algorithm can be easily modified to compute candidate keys

Minimal Cover

- Naturally, given a set \mathcal{F} of FDs, it is more desirable to work with the minimal equivalent set of FDs of \mathcal{F}
- A set \mathcal{F} of FDs is equivalent to a set \mathcal{G} of FDs if $\mathcal{F}^+ = \mathcal{G}^+$

- Given a set \mathcal{F} of FDs, what is the minimal cover for \mathcal{F} and how do we compute it?

Example

$\mathcal{F} = \{ A \rightarrow B, AB \rightarrow C \}$

$\mathcal{G} = \{ A \rightarrow B, A \rightarrow C \}$

Is $\mathcal{F}^+ = \mathcal{G}^+$? Notice that $A \rightarrow C$ can be derived from \mathcal{F} and $AB \rightarrow C$ can be derived from \mathcal{G}.
Minimal Cover

- A set \mathcal{F} of FDs is minimal if
 - For every FD $X \rightarrow Y$ and an attribute $A \in Y$, it is not the case that $\mathcal{F} - \{ X \rightarrow Y \} \cup \{ X \rightarrow (Y - \{A\}) \}$ is equivalent to \mathcal{F}
 - For every FD $X \rightarrow Y$ and an attribute $A \in X$, it is not the case that $\mathcal{F} - \{ X \rightarrow Y \} \cup \{ ((X - \{A\}) \rightarrow Y) \}$ is equivalent to \mathcal{F}
 - Each left hand side of a FD in \mathcal{F} is unique. Take any two FDs $X \rightarrow Y$ and $X' \rightarrow Y'$, it must be that $X \neq X'$

Determining extraneous attributes

- Example
 - The set of FDs $\{ A \rightarrow B, AB \rightarrow C \}$ is not minimal as it is equivalent to $\{ A \rightarrow B, A \rightarrow C \}$
 - $\{ A \rightarrow B, AB \rightarrow C, A \rightarrow C \}$ is not minimal as the LHS of $A \rightarrow B$ and $A \rightarrow C$ are not unique

- Consider an FD $X \rightarrow Y$ in \mathcal{F}
 - To check if A is an extraneous attribute on the RHS of $X \rightarrow Y$,
 - Let $\mathcal{F}' = \mathcal{F} - \{ X \rightarrow Y \} \cup \{ X \rightarrow (Y - \{A\}) \}$
 - Compute X^+ using \mathcal{F}' to check if A can be inferred
 - If A can be inferred from X^+, A is extraneous
Determining extraneous attributes

- Consider an FD $X \rightarrow Y$ in \mathcal{F}
 - To check if A is an extraneous attribute on the LHS of $X \rightarrow Y$,
 - Compute $(X\{A\})^+$ using \mathcal{F} to check if $X\{A\}$ can infer Y
 - If Y can be inferred, A is extraneous

Examples

- Let $\mathcal{F} = \{ ABC \rightarrow E, A \rightarrow F, A \rightarrow BE, B \rightarrow DE \}$
- A is extraneous in $ABC \rightarrow E$ because $BC^+ = \{ B, C, D, E \}$
- $\mathcal{F}_1 = \{ BC \rightarrow E, A \rightarrow F, A \rightarrow BE, B \rightarrow DE \}$
- B is not extraneous in $BC \rightarrow E$ because $C^+ = \{ C \}$
- C is extraneous in $BC \rightarrow E$ because $B^+ = \{ B, D, E \}$
- $\mathcal{F}_2 = \{ B \rightarrow E, A \rightarrow F, A \rightarrow BE, B \rightarrow DE \}$
- B is not extraneous in $A \rightarrow BE$ because $A^+ = \{ A, E, F \}$ w.r.t $\mathcal{F}^* = \{ B \rightarrow E, A \rightarrow F, A \rightarrow E, B \rightarrow DE \}$
- E is extraneous in $A \rightarrow BE$ because $A^+ = \{ A, B, D, E, F \}$ w.r.t $\mathcal{F}^* = \{ B \rightarrow E, A \rightarrow F, A \rightarrow B, B \rightarrow DE \}$
- $\mathcal{F}_3 = \{ B \rightarrow E, A \rightarrow F, A \rightarrow B, B \rightarrow DE \}$
- D is not extraneous in $B \rightarrow DE$. Why?
- E is extraneous in $B \rightarrow E$. Why?
Computing the minimal cover

Min_Cover = \mathcal{F}
Repeat {
 Apply union rule to merge FDs with the same LHS in Min_Cover;
 *Find an FD with an extraneous attribute in LHS or RHS;
 Delete extraneous attribute from the FD;
} until no change in Min_Cover;

* Enumerate each FD in \mathcal{F} and check for each attribute in the FD, whether they are extraneous

Example

• Consider the following set of FDs:
 \{ A \rightarrow BC, A \rightarrow B, B \rightarrow AC, C \rightarrow AB \}
• Apply union rule:
 \{ A \rightarrow BC, B \rightarrow AC, C \rightarrow AB \}
• Consider A \rightarrow BC.
 – Is A extraneous?
 – Is B extraneous?
 • A^+ (using F') is \{C, A, B\}. YES since B can be inferred
• The set of FDs: \{ A \rightarrow C, B \rightarrow AC, C \rightarrow AB \}
• ...
• Min_cover = \{ A \rightarrow C, B \rightarrow C, C \rightarrow AB \}
• Another minimal cover (by considering different extraneous attributes):
 \{ A \rightarrow B, B \rightarrow C, C \rightarrow A \} [Minimal cover is not unique]
Normal Forms

- Given a relation schema, we need to understand whether it is a good design.
- Intuitively, a good design is one that does not store data redundantly.
- Recall previous example:
 Employee(eid, name, addr, rank, salary-scale)
 Employee(eid, name, addr, rank)
 Salary-Scale(rank, salary-scale)
- Normal forms allow us to store data non-redundantly, given certain constraints we know about the data

First Normal Norm (1NF)

- A relation schema is in 1NF if the type of every attribute is atomic
- Example:
 R(ssn: char(9), name: string, age: int)
- All our examples so far have been in 1NF.
- Non-first normal form relation:
 R(ssn: char(9), name: Record[firstname: string, lastname: string], age: int, children: Set(string))
- Very basic requirement on relations. Not based on FDs.
Boyce-Codd Normal Form (BCNF)

- Let R be a relation schema, \mathcal{F} be a set of FDs given to hold over R, A is an attribute in R, and X is a subset of attributes in R
- R is in BCNF if
 - for every FD $X \rightarrow A$ in \mathcal{F}, either
 - $X \rightarrow A$ is a trivial dependency (i.e., $A \subseteq X$) or,
 - X is a superkey
- BNCF is desirable from redundancy point of view

BCNF example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td></td>
</tr>
<tr>
<td>a1</td>
<td>b2</td>
<td>c1</td>
<td></td>
</tr>
</tbody>
</table>

- Given that $A \rightarrow C$, we can infer that C value of second tuple is also $c1$
- But $a1$ and $c1$ are obviously redundantly stored
- The relation is not in BCNF because
 - Given that $A \rightarrow C$ is not a trivial dependency, A must be a superkey.
 - If A is a key, the B value of second tuple should be $b1$. This means we have two identical copies of the tuple $(a1, b1, c1)$ which is disallowed with set semantics
Third Normal Form (3NF)

- Let R be a relation schema, \mathcal{F} be a set of FDs given to hold over R, A is an attribute in R, and X is a subset of attributes in R
- R is in 3NF if
 - For every FD $X \rightarrow A$ in \mathcal{F}, one of the following is true
 - $X \rightarrow A$ is a trivial dependency (i.e., $A \subseteq X$)
 - X is a superkey
 - A is part of some key for R
- Note that A has to be the part of some minimal key for R

3NF example

- 3NF is not as strict as BCNF. Some redundancy may still be there.
- Consider $R(A, B, C, D)$ and $A \rightarrow D$.
- This relation schema is not in 3NF since
 - $A \rightarrow D$ is not a trivial dependency, A is not a superkey, and D is not part of the key
- A, D values may occur redundantly

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td>d1</td>
</tr>
<tr>
<td>a1</td>
<td>b2</td>
<td>c2</td>
<td>d1</td>
</tr>
<tr>
<td>a1</td>
<td>b2</td>
<td>c3</td>
<td>d1</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>c3</td>
<td>d2</td>
</tr>
</tbody>
</table>
3NF example

• Now consider $R(A, B, C, D)$, $A \rightarrow D$, and $D \rightarrow A$.
• BCD is also a key for R.
• Therefore R is in 3NF.
• However, A and D values may still occur redundantly.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td>d1</td>
</tr>
<tr>
<td>a1</td>
<td>b2</td>
<td>c2</td>
<td>d1</td>
</tr>
<tr>
<td>a1</td>
<td>b2</td>
<td>c3</td>
<td>d1</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>c3</td>
<td>d2</td>
</tr>
</tbody>
</table>

• An example where the relation is in 3NF but not in BCNF.

The big picture
Summary

- Anomalies caused by redundancy
- Functional dependencies
 - Closure of FDs
 - Armstrong's axioms
 - Attribute closure
 - Minimal cover
- Normal forms
 - 1NF, BCNF, 3NF