Schedule

- Today: Mar. 14 (TH)
 - Data Warehouses, Data Mining.
 - Project Part 7 due.
- Mar. 16 (Sa) Final Exam, 12–3PM. In class.
Warehousing

• The most common form of information integration: copy sources into a single DB and try to keep it up-to-date.

• Usual method: periodic reconstruction of the warehouse, perhaps overnight.
OLTP Versus OLAP

• Most database operations are of a type called on-line transaction processing (OLTP).
 • Short, simple queries and frequent updates involving one or a small number of tuples.
 • Examples: answering queries from a Web interface, recording sales at cash-registers, selling airline tickets.
• Of increasing importance are operations of the *on-line analytic processing* (OLAP) type.
 ◆ Few, but very complex and time-consuming queries (can run for hours).
 ◆ Updates are infrequent, and/or the answer to the query is not dependent on having an absolutely up-to-date database.
 ◆ Example: Amazon analyzes purchases by all its customers to come up with an individual screen with products of likely interest to the customer.
 ◆ Example: Analysts at Wal-Mart look for items with increasing sales at stores in some region.

• Common architecture: Local databases, say one per branch store, handle OLTP, while a warehouse integrating information from all branches handles OLAP.

• The most complex OLAP queries are often referred to as *data mining*.

Star Schemas

Commonly, the data at a warehouse is of two types:
1. *Fact Data*: Very large, accumulation of facts such as sales.
 - Often “insert-only”; once there, a tuple remains.
2. *Dimension Data*: Smaller, generally static, information about the entities involved in the facts.
Example

Suppose we wanted to record every sale of beer at all bars: the bar, the beer, the drinker who bought the beer, the day and time, the price charged.

• Fact data is in a relation with schema:
 \[
 \text{Sales}(\text{bar}, \text{beer}, \text{drinker}, \text{day}, \text{time}, \text{price})
 \]

• Dimension data could include a relation for bars, one for beers, and one for drinkers.
 \[
 \text{Bars}(\text{bar}, \text{addr}, \text{lic})
 \]
 \[
 \text{Beers}(\text{beer}, \text{manf})
 \]
 \[
 \text{Drinkers}(\text{drinker}, \text{addr}, \text{phone})
 \]
Two Approaches to Building Warehouses

1. *ROLAP* (Relational OLAP): relational database system tuned for star schemas, *e.g.*, using special index structures such as:
 - “Bitmap indexes” (for each key of a dimension table, *e.g.*, bar name, a bit-vector telling which tuples of the fact table have that value).
 - *Materialized views* = answers to general queries from which more specific queries can be answered with less work than if we had to work from the raw data.

2. *MOLAP* (Multidimensional OLAP): A specialized model based on a “cube” view of data.
ROLAP

Typical queries begin with a complete “star join,” for example:

```sql
SELECT *
FROM Sales, Bars, Beers, Drinkers
WHERE Sales.bar = Bars.bar AND
    Sales.beer = Beers.beer AND
    Sales.drinker = Drinkers.drinker;
```

- Typical OLAP query will:
 1. Do all or part of the star join.
 2. Filter interesting tuples based on fact and/or dimension data.
 3. Group by one or more dimensions.
 4. Aggregate the result.
- Example: “For each bar in Santa Cruz, find the total sale of each beer manufactured by Anheuser-Busch.”
Performance Issues

• If the fact table is large, queries will take much too long.
• Materialized views can help.

Example

For the question about bars in Santa Cruz and beers by Anheuser-Busch, we would be aided by the materialized view:

```sql
CREATE VIEW BABMS(bar, addr, beer, manf, sales) AS
SELECT bar, addr, beer, manf, SUM(price) AS sales
FROM Sales NATURAL JOIN Bars NATURAL JOIN Beers
GROUP BY bar, addr, beer, manf;
```
MOLAP

Based on “data cube”: keys of dimension tables form axes of the cube.

• Example: for our running example, we might have four dimensions: bar, beer, drinker, and time.

• Dependent attributes (price of the sale in our example) appear at the points of the cube.

• But the cube also includes aggregations (sums, typically) along the margins.

 ◆ Example: in our 4-dimensional cube, we would have the sum over each bar, each beer, each drinker, and each time instant (perhaps group by day).

 ◆ We would also have aggregations by all subsets of the dimensions, e.g., by each bar and beer, or by each beer, drinker, and day.
Slicing and Dicing

- **Slice** = select a value along one dimension, e.g., a particular bar.
- **Dice** = the same thing along another dimension, e.g., a particular beer.

Drill-Down and Roll-Up

- **Drill-down** = “de-aggregate” = break an aggregate into its constituents.
 - Example: having determined that Joe’s Bar in Palo Alto is selling very few Anheuser-Busch beers, break down his sales by the particular beer.
- **Roll-up** = aggregate along one dimension.
 - Example: given a table of how much Budweiser each drinker consumes at each bar, roll it up into a table of amount consumed by each drinker.
Performance

As with ROLAP, materialized views can help.

- Data-cubes invite materialized views that are aggregations in one or more dimensions.
- Dimensions need not be aggregated completely. Rather, grouping by attributes of the dimension table is possible.

 ◆ Example: a materialized view might aggregate by drinker completely, by beer not at all, by time according to the day, and by bar only according to the city of the bar.

 ◆ Example: time is a really interesting dimension, since there are natural groupings, such as weeks and months, that are not commensurate.
Data Mining

Large-scale queries designed to extract patterns from data.
• Big example: “association-rules” or “frequent itemsets.”

Market-Basket Data

An important source of data for association rules is market baskets.
• As a customer passes through the checkout, we learn what items they buy together, e.g., hamburger and ketchup.
• Gives us data with schema Baskets(bid, item).
• Marketers would like to know what items people buy together.
 ♦ Example: if people tend to buy hamburger and ketchup together, put them near each other, with potato chips between.
 ♦ Example: run a sale on hamburger and raise the price of ketchup.
Simplest Problem:
Find the Frequent Pairs of Items

Given a *support threshold*, \(s \), we could ask:

- Find the pairs of items that appear together in at least \(s \) baskets.

\[
\begin{align*}
\text{SELECT} & \quad \text{b1.item, b2.item} \\
\text{FROM} & \quad \text{Baskets b1, Baskets b2} \\
\text{WHERE} & \quad \text{b1.bid = b2.bid AND} \\
& \quad \text{b1.item < b2.item} \\
\text{GROUP BY} & \quad \text{b1.item, b2.item} \\
\text{HAVING} & \quad \text{COUNT(*)} \geq s;
\end{align*}
\]
A-Priori Trick

- Above query is prohibitively expensive for large data.
- *A-priori algorithm* uses the fact that a pair \((i, j)\) cannot have support \(s\) unless \(i\) and \(j\) both have support \(s\) by themselves.
- More efficient implementation uses an intermediate relation \(Baskets1\).

\[
\text{INSERT INTO Baskets1(bid, item) SELECT * FROM Baskets WHERE item IN (}
\text{SELECT item FROM Baskets GROUP BY item HAVING COUNT(*) >= s)}
\]

- Then run the query for pairs on \(Baskets1\) instead of \(Baskets\).