Schedule

• Today: Feb. 26 (T)
 ◆ Datalog.
 ◆ Read Sections 10.1–10.2. Assignment 6 due.

• Feb. 28 (TH)
 ◆ Datalog and SQL Recursion, ODL.
 ◆ Read Sections 10.3–10.4, 4.1–4.4. Project Part 6 due.

• Mar. 5 (T)
 ◆ More ODL, OQL.
 ◆ Read Sections 9.1. Assignment 7 due.

• Mar. 7 (TH)
 ◆ More OQL.
 ◆ Read Sections 9.2–9.3.
Logical Query Languages

Motivation:

1. Logical rules extend more naturally to recursive queries than does relational algebra.
 ◆ Used in SQL recursion.

2. Logical rules form the basis for many information-integration systems and applications.
Datalog Example

Likes(drinker, beer)
Sells(bar, beer, price)
Frequents(drinker, bar)

Happy(d) <-
 Frequents(d,bar) AND
 Likes(d,beer) AND
 Sells(bar,beer,p)

• Above is a rule.
• Left side = head.
• Right side = body = AND of subgoals.
• Head and subgoals are atoms.
 ◆ Atom = predicate and arguments.
 ◆ Predicate = relation name or arithmetic predicate, e.g. <.
 ◆ Arguments are variables or constants.
• Subgoals (not head) may optionally be negated by NOT.
Meaning of Rules

Head is true of its arguments if there exist values for *local* variables (those in body, not in head) that make all of the subgoals true.

- If no negation or arithmetic comparisons, just natural join the subgoals and project onto the head variables.

Example

Above rule equivalent to \(\text{Happy}(d) = \pi_{\text{drinker}}(\text{Frequents} \bowtie \text{Likes} \bowtie \text{Sells}) \)
Evaluation of Rules

Two, dual, approaches:

1. **Variable-based**: Consider all possible assignments of values to variables. If all subgoals are true, add the head to the result relation.

2. **Tuple-based**: Consider all assignments of tuples to subgoals that make each subgoal true. If the variables are assigned consistent values, add the head to the result.

Example: Variable-Based Assignment

\[
S(x,y) <- R(x,z) \text{ AND } R(z,y) \text{ AND NOT } R(x,y)
\]

\[
R = \begin{array}{c|c}
A & B \\
1 & 2 \\
2 & 3 \\
\end{array}
\]
• Only assignments that make first subgoal true:
 1. \(x \rightarrow 1, \ z \rightarrow 2. \)
 2. \(x \rightarrow 2, \ z \rightarrow 3. \)
• In case (1), \(y \rightarrow 3 \) makes second subgoal true. Since (1,3) is \textit{not} in \(R \), the third subgoal is also true.
 ◆ Thus, add \((x,y) = (1,3)\) to relation \(S \).
• In case (2), no value of \(y \) makes the second subgoal true. Thus, \(S = \)

\[
\begin{array}{c|c}
A & B \\
\hline
1 & 3 \\
\end{array}
\]
Example: Tuple-Based Assignment

Trick: start with the positive (not negated), relational (not arithmetic) subgoals only.

\[
S(x,y) \leftarrow R(x,z) \text{ AND } R(z,y) \text{ AND NOT } R(x,y)
\]

\[
R = \begin{array}{c|c}
A & B \\
1 & 2 \\
2 & 3 \\
\end{array}
\]

- Four assignments of tuples to subgoals:

<table>
<thead>
<tr>
<th>R(x,z)</th>
<th>R(z,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2)</td>
<td>(1,2)</td>
</tr>
<tr>
<td>(1,2)</td>
<td>(2,3)</td>
</tr>
<tr>
<td>(2,3)</td>
<td>(1,2)</td>
</tr>
<tr>
<td>(2,3)</td>
<td>(2,3)</td>
</tr>
</tbody>
</table>

- Only the second gives a consistent value to \(z\).
- That assignment also makes \(\text{NOT } R(x,y)\) true.
- Thus, (1,3) is the only tuple for the head.
Safety

A rule can make no sense if variables appear in funny ways.

Examples

- \(S(x) \leftarrow R(y) \)
- \(S(x) \leftarrow \text{NOT} \ R(x) \)
- \(S(x) \leftarrow R(y) \ \text{AND} \ x < y \)

In each of these cases, the result is infinite, even if the relation \(R \) is finite.

- To make sense as a database operation, we need to require three things of a variable \(x \) (= definition of safety). If \(x \) appears in either
 1. The head,
 2. A negated subgoal, or
 3. An arithmetic comparison,
 then \(x \) must also appear in a nonnegated, “ordinary” (relational) subgoal of the body.

- We insist that rules be safe, henceforth.
Datalog Programs

- A collection of rules is a *Datalog program*.
- Predicates/relations divide into two classes:
 - EDB = *extensional database* = relation stored in DB.
 - IDB = *intensional database* = relation defined by one or more rules.
- A predicate must be IDB or EDB, not both.
 - Thus, an IDB predicate can appear in the body or head of a rule; EDB only in the body.
Example

Convert the following SQL (Find the manufacturers of the beers Joe sells):

\[
\text{Beers}(\text{name}, \text{manf}) \\
\text{Sells}(\text{bar}, \text{beer}, \text{price})
\]

\[
\text{SELECT manf} \\
\text{FROM Beers} \\
\text{WHERE name IN(} \\
\quad \text{SELECT beer} \\
\quad \text{FROM Sells} \\
\quad \text{WHERE bar = 'Joe's Bar'} \\
\text{)};
\]

to a Datalog program.

\[
\text{JoeSells}(b) \leftarrow \\
\quad \text{Sells('Joe's Bar', b, p)}
\]

\[
\text{Answer}(m) \leftarrow \\
\quad \text{JoeSells}(b) \text{ AND Beers}(b,m)
\]

- **Note**: Beers, Sells = EDB; JoeSells, Answer = IDB.
Expressive Power of Datalog

- Nonrecursive Datalog = (classical) relational algebra.
 - See discussion in text.
- Datalog simulates SQL select-from-where without aggregation and grouping.
- Recursive Datalog expresses queries that cannot be expressed in SQL.
- But none of these languages have full expressive power \((Turing completeness)\).
Recursion

- IDB predicate P depends on predicate Q if there is a rule with P in the head and Q in a subgoal.
- Draw a graph: nodes = IDB predicates, arc $P \rightarrow Q$ means P depends on Q.
- Cycles if and only if recursive.

Recursive Example

\[
\begin{align*}
\text{Sib}(x,y) & \leftarrow \text{Par}(x,p) \text{ AND Par}(y,p) \\
& \quad \text{AND } x \neq y \\
\text{Cousin}(x,y) & \leftarrow \text{Sib}(x,y) \\
\text{Cousin}(x,y) & \leftarrow \text{Par}(x,xp) \\
& \quad \text{AND Par}(y,yp) \\
& \quad \text{AND Cousin}(xp,yp)
\end{align*}
\]
Iterative Fixed-Point Evaluates Recursive Rules

Start
IDB = ø

Apply rules to IDB, EDB

Change to IDB?

yes

no
done
• Note, because of symmetry, Sib and Cousin facts appear in pairs, so we shall mention only (x,y) when both (x,y) and (y,x) are meant.
<table>
<thead>
<tr>
<th></th>
<th>Sib</th>
<th>Cousin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>Round 1</td>
<td>(b, c), (c, e)</td>
<td>∅</td>
</tr>
<tr>
<td>add:</td>
<td>(g, h), (j, k)</td>
<td></td>
</tr>
<tr>
<td>Round 2</td>
<td></td>
<td>(b, c), (c, e)</td>
</tr>
<tr>
<td>add:</td>
<td></td>
<td>(g, h), (j, k)</td>
</tr>
<tr>
<td>Round 3</td>
<td>(f, g), (f, h)</td>
<td></td>
</tr>
<tr>
<td>add:</td>
<td>(g, i), (h, i)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(i, k)</td>
</tr>
<tr>
<td>Round 4</td>
<td>(k, k)</td>
<td></td>
</tr>
<tr>
<td>add:</td>
<td></td>
<td>(i, j)</td>
</tr>
</tbody>
</table>
Stratified Negation

- Negation wrapped inside a recursion makes no sense.
- Even when negation and recursion are separated, there can be ambiguity about what the rules mean, and some one meaning must be selected.
- *Stratified negation* is an additional restraint on recursive rules (like safety) that solves both problems:
 1. It rules out negation wrapped in recursion.
 2. When negation is separate from recursion, it yields the intuitively correct meaning of rules (the *stratified model*).
Problem with Recursive Negation

Consider:

\[P(x) \leftarrow Q(x) \land \neg P(x) \]

• \(Q = EDB = \{1,2\} \).

• Compute IDB \(P \) iteratively?

 ◆ Initially, \(P = \emptyset \).

 ◆ Round 1: \(P = \{1,2\} \).

 ◆ Round 2: \(P = \emptyset \), etc., etc.
Strata

Intuitively: stratum of an IDB predicate = maximum number of negations you can pass through on the way to an EDB predicate.

- Must not be ∞ in “stratified” rules.

- Define stratum graph:
 - Nodes = IDB predicates.
 - Arc $P \rightarrow Q$ if Q appears in the body of a rule with head P.
 - Label that arc “–” if Q is in a negated subgoal.

Example

\[P(x) \leftarrow Q(x) \text{ AND } \text{NOT} \ P(x) \]

\[- \begin{array}{c}
\downarrow \\
- \\
\end{array} \]

\[P \]
Example

Which target nodes cannot be reached from any source node?

\[
\begin{align*}
\text{Reach}(x) & \leftarrow \text{Source}(x) \\
\text{Reach}(x) & \leftarrow \text{Reach}(y) \text{ AND } \text{Arc}(y,x) \\
\text{NoReach}(x) & \leftarrow \text{Target}(x) \\
& \quad \text{AND NOT Reach}(x)
\end{align*}
\]

\[
\text{NoReach} \quad \Downarrow \\
\quad \Rightarrow \quad \text{Reach}
\]
Computing Strata

Stratum of an IDB predicate $A = \text{maximum number of } “–” \text{ arcs on any path from } A \text{ in the stratum graph.}

Examples

- For first example, stratum of P is ∞.
- For second example, stratum of Reach is 0; stratum of NoReach is 1.

Stratified Negation

A Datalog program is *stratified* if every IDB predicate has a finite stratum.

Stratified Model

If a Datalog program is stratified, we can compute the relations for the IDB predicates lowest-stratum-first.
Example

Reach(x) <- Source(x)
Reach(x) <- Reach(y) AND Arc(y,x)
NoReach(x) <- Target(x) AND NOT Reach(x)

• EDB:
 ◆ Source = {1}.
 ◆ Arc = {(1,2), (3,4), (4,3)}.
 ◆ Target = {2,3}.

• First compute Reach = {1,2} (stratum 0).
• Next compute NoReach = {3}.
Is the Stratified Solution “Obvious”?

Not really.

• There is another model that makes the rules true no matter what values we substitute for the variables.
 ◆ $\text{Reach} = \{1,2,3,4\}$.
 ◆ $\text{NoReach} = \emptyset$.

• Remember: the only way to make a Datalog rule false is to find values for the variables that make the body true and the head false.
 ◆ For this model, the heads of the rules for Reach are true for all values, and in the rule for NoReach the subgoal $\text{NOT Reach}(x)$ assures that the body cannot be true.