Homework 4: Shaders
Due Date: Friday, October 26th

1. Explain the difference between a vertex and fragment shader.
 o A vertex shader allows you to overwrite the functionality of OpenGL’s vertex
 positioning functionality, allowing you to edit transformations, normal calculations,
 light calculations, texture mapping, etc.
 o A fragment shader allows you to overwrite the functionality of OpenGL’s fragment
 coloring functionality, allowing you to specify your own color for a given fragment
 (or pixel).

2. Given a normal vector \(N <1, 3, 7> \) and a light source vector \(L <0, 2, 5> \). Compute the
 reflection vector and the half vector. Don’t forget to normalize.
 Reflection vector: \(R = 2*(\text{dot}(n,l))*n - l \)
 \(<0.13, 0.39, 0.91>\)
 Cannot compute the half vector, you don’t have the eye position.

3. Describe what I might do if I wanted to make my object bumpy, but not change the
 actual object. (You don’t need to say anything about implementation, just theory)
 Apply a non-uniform shading to the surface of the object (any form of texturing,
 custom shaders, etc.)
 (The problem was worded poorly; it should have read, “Make my object look bumpy,
 without changing the geometry”. This could be done by applying a normal map, or in
 the case of bumps have some sin, cos transformations on the normals, because they
 are periodic and “bumpy” you can transform the normals based upon a combination
 of those functions.)

4. This is a texture map with \(u, v \) coordinates listed:

![Texture Map](image-url)
a. Draw the approximate mapping on each quad if they were textured using the above image.

Solution is as follows:

![Quad mappings](image)

b. Describe the difference between bump mapping and texture mapping.

- Bump mapping is affecting the normals which changes what parts of the object are illuminated based upon the lighting conditions.
- Texture mapping affects the colors of the object by placing a section of an image onto a section on the object but has nothing to do with the normals or how the object is lit.