1) You wish to approximate a curve. You are given four control points. You wish to roughly plot the Bezier spline generated with the following control points: control point 1 (0, 0, 0), control point 2 (5, 5, 0), control point 3 (10, 0, 0), control point 4 (20, 5, 0);

You need at least 10 points plotted to get a good idea of the shape of the spline generated with these control points. You decide to plot the parametric values

\[u = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 \] (every 10th)

Show all work (I expect that you will want to use a calculator, give me 2 significant figures: i.e. round to the nearest 100th.)

You may decide that it is easier to write a quick program to generate the coordinates. This is acceptable if you give me a printout of the \((1-u)^3 \), \(3u(1-u)^2 \), \(3u^2 (1-u) \) and \(u^3 \) values along with the \(x, y, z \) coordinates each value of \(u \) generates.

5 points) Think about the convex-hull property of Bezier splines. All of the possible control points have a value of \(z = 0 \). Is it possible that \(z \) could be anything other than 0? If so, what could the value of \(z \) become?

30 points) Figure out the coordinates that should be graphed.

15 points) Correctly graph the spline (please connect the dots)

Apply \(P(u) = (1-t)^3 P_1 + 3t(1-t)^2 P_2 + 3t^2(1-t) P_3 + t^3 P_4 \)

<table>
<thead>
<tr>
<th>(u)</th>
<th>(P(u))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0, 0, 0)</td>
</tr>
<tr>
<td>0.1</td>
<td>(0.000, 1.000, 0.000)</td>
</tr>
<tr>
<td>0.2</td>
<td>(0.015, 1.221, 0.000)</td>
</tr>
<tr>
<td>0.3</td>
<td>(0.040, 1.924, 0.000)</td>
</tr>
<tr>
<td>0.4</td>
<td>(0.064, 2.344, 0.000)</td>
</tr>
<tr>
<td>0.5</td>
<td>(0.122, 2.478, 0.000)</td>
</tr>
<tr>
<td>0.6</td>
<td>(0.156, 2.500, 0.000)</td>
</tr>
<tr>
<td>0.7</td>
<td>(0.182, 2.500, 0.000)</td>
</tr>
<tr>
<td>0.8</td>
<td>(0.174, 3.040, 0.000)</td>
</tr>
<tr>
<td>0.9</td>
<td>(0.157, 3.760, 0.000)</td>
</tr>
<tr>
<td>1</td>
<td>(0, 0, 0)</td>
</tr>
</tbody>
</table>
2. We are given the same four control points. Except this time, we wish to interpolate a curve. We will use the Cardinal spline method to generate a curve.

Again: You decide to plot the parametric values
u=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 (every 10th)

But you decide to visualize the difference between tension=0, and tension=1. Again, use a calculator. Report results to two significant figures. (Or you may wish to write a quick program to generate Cardinal Splines)

Show all work: After lightly tracing the spline in pencil, trace the spline in different color pens to indicate tension 0, and tension 1.

(15 points) Generate the curve using tension= 0.

(5 points) Plot the resulting coordinates.

(15 points) Generate the curve using tension= -1.

(5 points) Plot the resulting coordinates

(5 points) Plot the control points. Are all of them on the spline? Why?

(5 points) Do the two tension settings differ? If so WHY?

\[P(u) = CAR_0, P_1 + CAR_1, P_2 + CAR_2, P_3 + CAR_3, P_4 \]

\[CAR_0 = -Su^3 + 2Su^2 - Su \]

\[CAR_1 = (2S - 5)u^3 + (S - 3)u^2 + 1 \]

\[CAR_2 = (S - 2)u^3 + (3 - 2S)u^2 + Su \]

\[CAR_3 = Su - Su^2 \]
2. We are given the same four control points. Except this time, we wish to interpolate a curve. We will use the Cardinal spline method to generate a curve.

Again: You decide to plot the parametric values
\[u=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, \text{ and } 1.0 \] (every 10th)

But you decide to visualize the difference between tension=0, and tension=1. Again, use a calculator. Report results to two significant figures. (Or you may wish to write a quick program to generate Cardinal Splines)

Show all work: After lightly tracing the spline in pencil, trace the spline in different color pens to indicate tension 0, and tension 1.

(15 points) Generate the curve using tension=0.
(5 points) Plot the resulting coordinates.
(15 points) Generate the curve using tension=-1.
(5 points) Plot the resulting coordinates
(5 points) Plot the control points. Are all of them on the spline? Why?
(5 points) Do the two tension settings differ? If so WHY?