1. Show that $\text{Accept}(\Lambda)$ is undecidable.

2. Show that if $\mathcal{P} = \mathcal{NP}$, a polynomial time algorithm exists that, given a Boolean formula ϕ, actually produces a satisfying assignment for ϕ.

3. Show that \mathcal{P} is closed under Kleene star. That is if $L \in \mathcal{P}$ then $L^* \in \mathcal{P}$ as well. Do the same for \mathcal{NP}.

4. Show that the Hamiltonian Path problem is NP-complete by reducing the Hamiltonian Cycle problem to it.

5. Give the definition of NP-completeness.

6. Let $L = \{e(T)|x|t\} :$ where T is a deterministic TM that accepts x within t steps}. Show that L is NP-complete.

7. Show that TSP is NPC by reduction for HC to TSP.

8. Show that the following problem is in \mathcal{P}:
 k-CLIQUE:
 INSTANCE: An undirected graph $G = (V, E)$.
 QUESTION: Does G of a clique of size k, where k is a constant.

9. Show that the following problem is NP-complete.

 - FEEDBACK VERTEX SET
 INSTANCE: Directed Graph $G = (V, A)$, positive integer $K \leq |V|$.
 QUESTION: Is there a subset $V' \subseteq V$ such that $|V'| \leq K$ and such that every directed circuit in G includes at least one vert from V''? (Hint: reduce from Vertex Cover)

 - DOMINATING SET
 INSTANCE: Graph $G = (V, E)$, positive integer $K \leq |V|$.
 QUESTION: Is there a subset $V' \subseteq V$ such that $|V'| \leq K$ and such that every vertex $v \in V - V'$ is joined to at least one member of V' by an edge in E? (Hint: reduce from Vertex Cover)

10. Give a definition of the Post Correspondence Problem. What is the complexity of this decision problem?
11. A real number x in the interval (0..1) is called *computable* if there is a TM that enumerates the digits of x after the decimal point. Are all reals in (0..1) computable? Give reasons for your answer!

12. Is there an unrestricted grammar generating the following language:

$$SA = \{ e(T) : T \text{ accepts } e(T) \}$$

What is language class generated by unrestricted grammars?

13. Give a definition of the Busy Beaver Function. Somebody claims that this function can be computed with a new kind of computer that uses light to send messages. What is your opinion of this claim?

14. Recall Collatz’s conjecture:

Each natural number is associated with a sequence as follows: if it is even, then divide the number by two and if it is odd, multiply it by three and add one.

Example: 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 4 2 1 ...

Conjecture: All natural number go to 1.

This conjecture is open!

Show that if the Halting Problem was decidable then this conjecture could be resolved one way or the other.

Hint: Assume the existence of a TM T that halts on n iff n goes to 1. Further assume that T_H decides the halting problem, i.e. T_H on inputs $e(T)$ and $e(n)$ decides whether n goes to 1.

Now sketch a new TM that halts iff there is a number that does not go to one. Put it all together and show how this outline can be used to resolve the conjecture.

15. Show that \mathcal{P} is closed under polynomial time reductions.

16. Show that if an \mathcal{NP}-complete problem is in \mathcal{P}, then $\mathcal{P} = \mathcal{NP}$.