13.11 Show that for any solvable decision problem there is a way to encode instances of the problem so that the corresponding language can be recognized by a TM with linear time complexity.

Method One: Make The Encoding Solve The Problem

We define such an encoding, e, as follows

\[e(x) = \begin{cases}
 1x & \text{if } x \text{ is a yes-instance of the decision problem} \\
 0x & \text{otherwise}
\end{cases} \]

The decision problem is solvable, so e is computable. e(x) can be recognized in a single move by examining the first character of the input. Linear time complexity means there are non-negative constants m, b such that \(\tau_T(|x|) \leq mx + b \) where \(\tau_T \) is the time complexity of the machine solving the decision problem. Clearly this is true for \(m = 0 \) and \(b = 1 \).

Method Two: Padding the input

For a given input x to a decision problem solved by the TM T, we can calculate \(\tau_T(|x|) \) by running T and counting the number of required steps. So we can define an encoding e such that \(e(x) = x\Delta^k \) such that \(|x\Delta^k| = \tau_T(|x|) \). Now for any input \(e(x') \), T requires exactly \(|e(x')| \) steps and so its time complexity is linear with respect to the encoded input.

14.4 a. Let \(L_1 \) and \(L_2 \) be languages over \(\Sigma_1 \) and \(\Sigma_2 \) respectively. Show that \(L_1 \leq_P L_2 \Rightarrow \overline{L_1} \leq_P \overline{L_2} \).

If \(L_1 \leq_P L_2 \) then there exists an \(f \) such that \(x \in L_1 \) if and only if \(f(x) \in L_2 \) and \(f \) can be computed in time polynomial in the length of \(x \). It follows from this definition that \(x \notin L_1 \) if and only if \(f(x) \notin L_2 \); and hence \(x \in \overline{L_1} \) if and only if \(f(x) \in \overline{L_2} \). Thus \(f \) is also a reduction from \(\overline{L_1} \) to \(\overline{L_2} \).

b. Let \(\text{coNP} = \{ \overline{L} | L \in \text{NP} \} \). Show that if there exists \(L \) such that \(L \) is \(\text{NP} \)-complete and \(\overline{L} \in \text{NP} \) then \(\text{coNP} \subseteq \text{NP} \).

First recall that the class \(\text{NP} \) is closed under polynomial-time reductions; that is, if \(L_1 \leq_P L_2 \) and \(L_2 \in \text{NP} \) then \(L_1 \in \text{NP} \).

\(L \) is \(\text{NP} \)-complete, so \(L \in \text{NP} \) and for all \(L_1 \in \text{NP} \), \(L_1 \leq_P L \). It follows from part a that for all \(L_2 \in \text{coNP}, L_2 \leq_P \overline{L} \). Since \(\overline{L} \in \text{NP} \) and \(\text{NP} \) is closed under polynomial-time reductions this implies that \(\text{coNP} \subseteq \text{NP} \).

14.5 Show that if \(L_1, L_2 \subseteq \Sigma^*, L_1 \in \text{P}, \) and \(L_2 \) is neither \(\emptyset \) nor \(\Sigma^* \), then \(L_1 \leq_P L_2 \).

By assumption, there exists \(x_1 \in L_2 \) and \(x_2 \notin L_2 \). Let \(f \), the function which carries out this reduction, be defined as

\[f(x) = \begin{cases}
 x_1 & \text{if } x \in L_1 \\
 x_2 & \text{otherwise.}
\end{cases} \]

Note that membership in \(L_1 \) can be determined in polynomial time, so \(f \) can be computed in polynomial time. \(x \in L_1 \) if and only if \(f(x) = x_1 \in L_1 \), so \(L_1 \leq_P L_2 \).

14.6 a. If every instance of a problem \(P_1 \) is an instance of a problem \(P_2 \), and if \(P_2 \) is \(\text{NP} \)-hard, then \(P_1 \) is \(\text{NP} \)-hard. True or false?
False. P_1 could have no instances, and hence be trivial to solve (the algorithm could always answer “no”).

At the language level this is perhaps more clear: $L_1 = \emptyset \subseteq L_2$ for any L_2 but $\emptyset \in \mathcal{P}$. More generally, let $L'_2 \subseteq L_2$ be the hard instances of L_2; it could be that $L'_2 \cap L_1 = \emptyset$ and hence $L_1 \in \mathcal{P}$.

b. Show that $3\text{-SAT} \leq_p \text{CNF-SAT}$. Every instance of 3-SAT is an instance of CNF-SAT and $X \in 3\text{-SAT}$ if and only if $X \in \text{CNF-SAT}$, so the identity function is a polynomial reduction from 3-SAT to CNF-SAT.

c. Generalize part b in some way. For any two problems P_1, P_2 if all yes-instances of P_1 are yes-instances of P_2 and all no-instances of P_1 are no instances of P_2 then the identity function is a polynomial time reduction from P_1 to P_2.

14.9 Show that if $k \geq 4$ the $K\text{-SAT}$ problem is \mathcal{NP}-complete.

We will show this holds for $k \geq 3$ by induction.

Base Case: 3-SAT is shown to be \mathcal{NP}-complete in Theorem 14.6.

Inductive Case: Assuming $K\text{-SAT}$ is \mathcal{NP}-complete, we will show $(K+1)\text{-SAT}$ is also \mathcal{NP}-complete. First, note that $(K+1)\text{-SAT}$ is in \mathcal{NP} since a non-deterministically generated truth assignment can be evaluated in polynomial time.

Now we will show that $(K+1)\text{-SAT}$ is \mathcal{NP}-hard by reducing $K\text{-SAT}$ to it, completing the proof of \mathcal{NP}-completeness.

$K\text{-SAT} \leq_p (K+1)\text{-SAT}$

1. Let F be the function which carries out the reduction. We define F as follows: given an expression

$$X = A_1 \land \ldots \land A_n$$

where each A_i is a k-term disjunction,

$$F(X) = (x_{k+1} \lor A_1) \land (\overline{x}_{k+1} \lor A_1) \land \ldots \land (x_{k+1} \lor A_n) \land (\overline{x}_{k+1} \lor A_n).$$

2. F creates two disjunctions for every term in X so it is computable in time proportional to $2|X|$.

3. For any boolean expression Z and any truth assignment of x_1,

$$(x \lor Z) \land (\overline{x} \lor Z) = (T \lor Z) \land (F \lor Z) = T \land Z = Z$$

Thus $F(X)$ is satisfiable if and only if X is satisfiable.