Homework 5 Solutions, CS 132, Winter 2005

March 10, 2005

11.15 Show that the decision problem \textbf{WritesNonBlank}: Given a TM \(T \), does it ever write a nonblank symbol on its tape when started with a blank tape? is solvable, by providing a decision algorithm.

Suppose \(T \) has \(n \) non-halting states. Within \(n \) moves, \(T \) will have halted or entered some non-halting state \(q \) for the second time. Since there is no input on the tape, if \(T \) enters any state twice it is in a loop and will either continue infinitely down the tape to the right without ever writing a symbol or continue to the left and crash. This can easily be determined by recording where on the tape \(T \) enters each state. Say \(q \) has been encountered twice, first on the \(i \)th cell and then on the \(j \)th cell. If \(j > i \) then \(T \) is in an infinite loop. If \(i > j \) then it will continue to enter state \(q \) at cells \(2j - i, 3j - 2i, 4j - 3i, \ldots \) until it crashes at the beginning of the tape. Thus in the first \(n \) moves \(T \) will write a non-blank symbol or else it will have repeated a state or crashed, in which case it never will.

1. (11.18) Give a solution to the correspondence system or show that none exists.
 a. \(\alpha_1 = 100, \alpha_2 = 101, \alpha_3 = 110, \beta_1 = 10, \beta_2 = 01, \beta_3 = 1010. \)
 Any viable solution must begin with 1, which means the next two must be 2, which then requires 1 again, but no correspondence is possible from here.
 b. \(\alpha_1 = 1, \alpha_2 = 01, \alpha_3 = 0, \alpha_4 = 001, \beta_1 = 10, \beta_2 = 101, \beta_3 = 101, \beta_4 = 0. \)
 One solution is \(\alpha_1 \alpha_4 \alpha_2 = \beta_1 \beta_4 \beta_2. \)

11.21 c. Show that the following decision problem is unsolvable. \textbf{CFGEqualReg}: Given a CFG \(G \) and a regular language \(R \), is \(L(R) = R? \)

We will show \textbf{CFGGeneratesAll} \(\leq \) \textbf{CFGEqualReg}.

The input to \textbf{CFGGeneratesAll} is a grammar \(G \) over some alphabet \(\Sigma \); the input to \textbf{CFGEqualReg} is a grammar \(G' \) and a regular language \(R \). We must give a computable \(F \) so that \(G \) is a yes instance of \textbf{CFGGeneratesAll} if and only if \(F(G) = (G', R) \) is a yes-instance of \textbf{CFGEqualReg}.

1. We define \(F(G) = (G, \Sigma^*) \). Recall that \(\Sigma^* \) is a regular language.
2. \(F \) makes no modification to \(G \) and needs only denote \(\Sigma^* \), not enumerate it, so \(F \) is computable.
3. If \(G \) is a yes-instance of \textbf{CFGGeneratesAll} then \(L(G) = \Sigma^* \) and so \((G, \Sigma^*) \) is a yes-instance of \textbf{CFGEqualReg}. Likewise if \(L(G') = \Sigma^* \) then, since \(L(G) = L(G') \), \(G \) is a yes-instance of \textbf{CFGGeneratesAll}.

12.1 Let \(f : N \rightarrow N \) be the function defined as follows: \(f(n) \) is the maximum number of moves an \(n \)-state TM with tape alphabet \(\{0, 1\} \) can make if it starts with input \(1^n \) and eventually halts. Show that \(f \) is not computable.

Suppose \(f \) is computable, and let \(T_f \) be the TM that computes \(f \). We can create a TM \(T' = T_f T_1 \) where \(T_1 \) is a TM which makes a single move and then halts. \(T' \) has a fixed number of states, call this number \(m \). By definition of the function \(f \), \(T' \) makes fewer than \(f(m) \) moves on input \(1^m \). But since \(T_f \) writes \(m \) to the tape it must make at least \(m \) moves, meaning \(T' \) must make at least \(m + 1 \). Contradiction.
12.5 Show that if \(f : \mathbb{N} \to \mathbb{N} \) is a total function, then \(f \) is computable if and only if the decision problem: Given \(n, C \in \mathbb{N} \), is \(f(n) > C \)? is solvable.

If \(f \) is a computable total function, then we can solve the decision problem by computing \(f(n) \) and comparing it to \(C \).

If the decision problem is solvable, then we can compute \(f(n) \) by successively solving the problem \(f(n) > C \) for \(C = 0, 1, \ldots \); we output the first \(C \) such that \(f(n) > C \) is false and then immediately halt.

Another way of saying this is
\[
f(n) = \mu C[f(n) > C \text{ is false}].
\]

Since \([f(n) > C \text{ is false}]\) is a total function and all \(\mu \)-recursive functions are computable this shows that \(f \) is computable.

11.20 (Extra Credit) Show that the special case of PCP in which the alphabet has only one symbol is solvable.

Given an instance \((\alpha_1, \beta_1), \ldots, (\alpha_n, \beta_n)\) of PCP in which \(\alpha_i, \beta_i \in \{1\}^* \). For each \(i \), let \(d_i = |\alpha_i| - |\beta_i| \).

If \(d_i = 0 \) for some \(i \), then clearly it is a yes-instance. Likewise if \(d_i > 0 \) or \(d_i < 0 \) for all \(i \) then clearly it is a no-instance.

Otherwise, there is an \(i \) and \(j \) such that \(d_i = p > 0 \) and \(d_j = -q < 0 \). In this case we claim \(\alpha_i^p \beta_j^q = \beta_i^q \alpha_j^p \) is a solution. Note that since we have only one symbol in our alphabet, strings differ only by length. The length of the alphas is
\[
q|\alpha_i| + p|\alpha_j| = (|\beta_j| - |\alpha_j|)|\alpha_i| + (|\alpha_i| - |\beta_i|)|\alpha_j| = |\alpha_i||\beta_j| - |\alpha_j||\beta_i| =
\[
(|\beta_j| - |\alpha_j|)|\beta_i| + (|\alpha_i| - |\beta_i|)|\beta_j| = q|\beta_i| + p|\beta_j|.
\]

Thus \(\alpha_i^p \beta_j^q = \beta_i^q \alpha_j^p \).

We can use this property to construct a simple decision algorithm: we check if there exists \(i \) such that \(d_i = 0 \) or \(j, k \) such that \(d_j > 0 \) and \(d_k < 0 \).

11.34 Is the decision problem: Given a CFG \(G \) and a string \(x \), is \(L(G) = \{x\} \) solvable or unsolvable.

It is solvable. Here is an algorithm to solve it. First test \(x \) for membership in \(L(G) \). If \(x \notin L(G) \) then \(L(G) \neq \{x\} \). If \(x \in L(G) \) then construct a PDA \(M \) accepting \(L(G) \) using the method in Section 7.4. Since \(L_1 = \{z \in \Sigma^* | z \neq x\} \) is regular, the proof of Theorem 8.4 provides an algorithm for constructing another PDA \(M_1 \) to accept \(L \setminus L_1 \). Section 7.5 describes an algorithm to produce a CFG \(G_1 \) generating \(L(M_1) \). In Section 8.3 there is a decision algorithm to decide whether \(L(G_1) = \emptyset \). \(L(G) = \{x\} \) if and only if \(L(G_1) = \emptyset \).