9.45 Show that if there is a TM $T = (Q, 1, \Lambda, q_0, \delta)$ computing the function $f : \mathbb{N} \to \mathbb{N}$, then there is another one, T', whose tape alphabet is $\{1\}$.

Let tape alphabet of T be $\Lambda = \{a_1, \ldots, a_n\}$. We will use an encoding function, e, such that

$$e(a_i) = 1^i \Delta^{n+1-i}$$

and

$$e(\Delta) = \Delta^{n+1}.\$$

Now we can construct a TM $T' = (Q', \{1\}, \{1\}, q'_0, \delta')$. Q' will contain q_0, \ldots, q_n for every $Q \in Q$; the halt states are $h_{a,n}$ and $h_{r,n}$. δ' will be such that for any transition $\delta(r, X) = (r', Y, D)$ in T,

$$\delta'^n(r_0, e(X)) = (r'_0, e(Y), D),$$

where δ'^n indicates n applications of δ' to the successive symbols in $e(X)$. Finally, since both input and output comes in the form of 1^k, we must translate the input to $e(1^k)$, and translate the output back into all 1s.

It is easy to show by induction that if $\delta^*(q_0, x) = (h_a, y, D)$ then $\delta^*(q_0, e(x)) = (h_a, e(y), D)$.

Thus when we add the encoding and decoding to T' it will compute exactly the same function.

10.3 Is the following statement true or false? If L_1, L_2, \ldots are recursively enumerable subsets of Σ^*, then $\bigcup_{i=1}^{\infty} L_i$ is recursively enumerable. Give reasons for your answer.

False. Let $L = \{x_1, x_2, \ldots\}$ be a language that is not recursively enumerable. By itself, each word in L_i, is a recursively enumerable language, namely $\{x_i\}$ (which is finite and hence regular); but by assumption $\bigcup_{i=1}^{\infty} x_i = L$ is uncomputable.

10.4 Suppose L_1, \ldots, L_k form a partition of Σ^*; in other words, their union is Σ^* and any two are disjoint. Show that if each L_i is recursively enumerable, then each L_i is recursive.

There are at least two methods of proving this. One is to use machines accepting L_1, \ldots, L_k to create a machine that decides L_i. To do this we simulate all machines in parallel, one step at a time. We then accept immediately if T_i accepts, and reject immediately if $T_j, j \neq i$ accepts. The details of such a parallel simulation are numerous and can be taken from theorem 9.2.

A slightly simpler proof is the following: L_i is r.e. by assumption; $\overline{L_i} = \bigcup_{j \neq i} L_j$ is a union of r.e. languages; so by theorem 10.3, $\overline{T_i}$ is r.e. Since both L_i and its complement are r.e., by theorem 10.5 both are recursive.
10.5 Prove theorem 10.7, which says that a language is recursive if and only if there is a Turing machine enumerating it in canonical order.

First we will show that if there is a TM T that enumerates a language L in canonical order, then L is recursive. To do this we will use T to construct T', a TM that will decide L. Given a string x, T' will act as follows: it will simulate T until T writes a $\#$ to the output tape, denoting the end of a newly outputed string. Call this new string y. If $x = y$, T' halts and accepts; if y is higher in the canonical ordering of Σ^* than x, T' halts and rejects; otherwise T' resumes the simulation of T and repeats the process. Since there are a finite number of strings lower in the canonical ordering than x, this process must halt after a finite number of rounds.

Now we will show that if L is recursive there exists a TM T that enumerates it in canonical order. Since L is recursive let T' be the TM which decides it; we will use this TM to construct T. T will have three tapes: tape one will store the enumerated output, tape two will store the current input, and tape three will hold a simulation of T'. T will begin with the encoding of T' on tape three, and the other two tapes blanks. T will then repeat the following: (1) simulate T' on the contents of tape two; (2) if T' accepts the current input on tape two, copy it to tape one followed by $\#$; (3) replace the contents of tape two with the next word in the canonical ordering of Σ^*. Clearly, T thus writes only those words which T' accepts to tape one, and does so in canonical order.

10.8 (Extra Credit) Describe algorithms to enumerate these sets.

a. The set of all pairs (n, m) for which n and m are relatively prime positive integers.

b. The set of all strings over $\{0, 1\}$ that contain a non-null substring of the form www.

Both of these sets are clearly recursive, so let T_a be a TM which computes the characteristic function of the set in part a, and T_b a machine that computes the characteristic function of strings in part b. We can easily enumerate these sets by successively simulating T_a or T_b on all strings in Σ^*, and outputting those for which T_a or T_b outputs a 1.

c. Only $n = \{1, 2\}$ satisfy $x^n + y^n = z^n$, so this outputting this set is easy. (See http://mathworld.wolfram.com/FermatsLastTheorem.html for details).