1. Give a deterministic finite state automaton (FA) that accepts all strings over \{a, b\} that don't contain the substring \textit{aba}.

\textit{15pts} Hint: First construct an FA for all strings that contain \textit{aba}.

\[
\begin{array}{c}
\text{start new} \\
\text{at least one occurrence of } \textit{aba}
\end{array}
\]
2) Show that for any regular language L, L^2 is regular as well, where $L^2 = \{vw : v \in L \text{ and } w \in L\}$.

1) Let α be reg. expr. for L
Then $\alpha \alpha$ generates L^2

2) Given an NFA M for accepting L

- 2 copies of M
- A transitions from final of first to start of second
- Undesignate finals of first & start of second
Minimize the following FA. Show your work (give the table). Show the resulting FA in case the number of states was reduced.

20 pts

\[\begin{array}{c|ccc}
2 & 2 & 2 \\
3 & 2 & \\
4 & 1 & 1 & 1 \\
\hline
1 & 2 & 3 \\
\end{array}\]

\[2 = 3\]

\[\begin{array}{c}
1 \xrightarrow{\alpha, \beta} 2, 3 \\
\end{array}\]

\[\begin{array}{c}
2, 3 \xrightarrow{\alpha} 4 \\
\end{array}\]

\[\begin{array}{c}
4 \xrightarrow{\beta} 2 \\
\end{array}\]
4) Use the "subset construction method" to convert the following NFA to an FA. Label the FA you produce with the subsets of states of original NFA.
7. Give a pair of distinguishable words w.r.t. the language $L = 0(0 + 11)*1$ and show that the pair is distinguishable.

15 pts

Hint: Choose a pair of short words:

\[\Lambda \text{ and } 01 \text{ are dist.} \]

Because \[|\{ \Lambda \epsilon, 01 \epsilon \} \cap L | = 1 \text{ for } \epsilon = \Lambda \]
Use the closure properties of regular languages to show that the following language are not regular:

\[L = \{ w \in \{a, b\} : \text{the number of } a\text{'s in } w \text{ equals the number of } b\text{'s} \} \]

Hint: What simple non-regular language \(L' \) is \(L \) related to?

Assume \(L \) regular

Then \(L \cap a^* b^* \) regular because

- regular languages are closed under intersection
- \(a^* b^* \) is regular

But \(L \cap a^* b^* = \{ a^n b^n : n \geq 0 \} \)

which is not regular

This is a contradiction and therefore \(L \) is not regular
Show that the language \(L = \{0^i1^j0^k : k \leq i + j \} \) is non-regular using the following version of the Pumping Lemma.

For every regular language \(L \) there is a constant \(N \) such that each word \(x \in L \) of length at least \(N \) can be written as \(uvw \) such that the following holds:

1. \(|uv| \leq N\),
2. \(v\) is not the empty word and
3. for all \(i \geq 0 \), \(uv^iw \in L \).

Hint: Try to pump up or down and check which way you arrive at a word that is not in \(L \).

Assume \(L \) regular. Then PL applies. Let \(N \) be a constant of PL.

Choose \(x = 0^N10^{N+1} \).

Since \(x \in L \), and \((x1) \geq N\),

\(x \) can be rewritten as \(uvw \) s.t. i) - iii) hold

By i) \& ii) \(v = 0^q \) for \(q > 0 \).

By iii) \(uvw = 0^{N-q}10^{N+1} \).

That is, for this word

\[i = N-q, \]
\[j = 1, \]
\[k = N+1. \]

Since \(k > i + j = N+1-q \),

\(uvw \notin L \) and we have a contradiction.