1. Give an NFA that accepts all strings over \(\{a, b\} \) containing two consecutive \(a \)'s or two consecutive \(b \)'s (non-exclusive 'or').
\[
(a+b)^* (aa + bb)(a+b)^*
\]

2. For each state of the following NFA give a regular expression for all the strings that lead to that state.

\[
N
\]

\[
A : (01)^*
\]

\[
B : 0(10)^*
\]

\[
C : 0(10)^*(0+1)^+
\]
4. Minimize the following FA. Show your work. Draw the new FA in case the number of states was reduced.

3. Convert the following λ-NFA into a regular expression. Use the algorithm given in class that eliminates one node at a time and creates arcs that are labeled with regular expressions.

\[
(a^+ + a(a+ba^+)) \cdot (b(a^+ + a(a+ba^+)))^* \]
Use the "subset construction method" to convert the following NFA to an FA. Show the steps of your construction as well as the final FA.
Show that \(L := \{ww : w \in \{a, b\}^*\} \) is not regular by exhibiting an infinite set that is pairwise distinguishable.

Hint: Use \(S = \{ba^i : i \geq 1\} \).

Prove for each pair of words of \(S \) that it is pairwise distinguishable.

Proof: Let \(x \) and \(y \) be two arbitrary distinct elements of \(S \). That is,

\[
x = ba^j, \quad y = ba^k, \text{ and } j \neq k, \quad j \geq 1, \quad k \geq 1
\]

Select \(z = ba^j \).

\[
xz = (ba^j)(ba^j) \in L
\]

\[
yz = (ba^k)(ba^j) \notin L, \text{ since } k \neq j.
\]

It follows that the infinite set \(S \) is pairwise distinguishable w.r.t. \(L \).

Thus \(L \) can't be regular since distinguishable words have to end up in different states in a DFA that accepts \(L \).
Show that if a language L over some finite alphabet Σ is regular then the language \overline{L} of all suffixes of words in L is also regular.

Formally \overline{L} is defined as $\{w \in \Sigma^* | \exists v \in \Sigma^* \text{ such that } uv \in L\}$.

Hint: There are many solutions to this problem. One solution uses other similar closure properties of regular sets that were discussed in class.

I) Since L is regular, there is an FA that accepts it. We will construct a $\overline{NFA} \tilde{M}$ that accepts \overline{L}. Since \overline{NFA}'s accept regular languages, we are done.

To construct \tilde{M} from M, add a new state q_f to M and make it the start state of the new machine. Add a transition to all states of M reachable from the old start state of M.

This condition is necessary!

II) $\text{SUFF}(L) = \text{REV}(\text{PREV}(\text{REV}(L)))$

$\text{REV}(L) = \{w \in \Sigma^* : w^R \in L\}$

$\text{PREV}(L) = \{w \in \Sigma^* : \exists \ v \in \Sigma^* \text{ and } uvw \in L\}$

We showed in class that regular languages are closed under the operations REV and PREV, and thus L, and are closed under PREV as well.
Use the Pumping Lemma for regular languages to show that \(\{a^i b^j | 0 \leq 2i \leq j \} \) is not regular.

You can use the following Pumping Lemma:

For every regular language \(L \) there is a constant \(N \) such that each word \(z \in L \) of length at least \(N \) can be written as \(uwv \) such that the following holds:

i) \(|uv| \leq N \),

ii) \(v \) is not the empty word and

iii) for all \(i \geq 0 \), \(uv^i w \in L \).

Assume \(L \) is regular. Then the PL holds for \(L \).

Let \(N \) be the constant of the PL.

Let \(x = a^N b^{2N} \), since \(x \in L \) and \(|x| > N \),

\(x \) can be written as \(uvw \) such that \(i), ii) \) and

\(iii) \) of PL hold.

i) implies that \(uv \in a^* \)

ii) implies that \(v \in a^+ \).

iii) implies that

\[uv^2 w = a^{N+|uv|} b^{2N} \in L \]

By the definition of \(L \) this means that

\[2(N+|uv|) \leq 2N \]

This can't be true since \(|uv| > 1 \).

We have a contradiction to the assumption that \(L \) is regular!