The claim is that the following procedure cannot exist:

Procedure $H(\text{LIST}, \text{ARG})$

Specification of what $H(\text{LIST}, \text{ARG})$ is to do:

If LIST is the listing of a procedure P, then the procedure H does the following:

If procedure P is run with input ARG and stops
then H outputs YES and stops
otherwise it outputs NO and stops.

Proof by contradiction: Assume a procedure H fulfilling the above specification exists. Then it is easy to construct the following new procedure with the specification given:

Procedure $NH(\text{LIST})$

Specification:

If the execution of $H(\text{LIST}, \text{LIST})$ outputs YES
then $NH(\text{LIST})$ runs into an infinite loop.

If the execution of $H(\text{LIST}, \text{LIST})$ outputs NO
then $NH(\text{LIST})$ stops.

How is $NH(\text{LIST})$ constructed? Simply use the code for H except that

- each occurrence of ARG in the code of H is replaced by LIST,
- each statement in the code that outputs YES is replaced by a statement that causes an infinite loop,
- and each statement that outputs NO is simply deleted causing the machine to stop without outputting anything.

Clearly if a procedure H exists following its specification then NH follows its specification.

Now consider the execution $H(<\text{NH}>,<\text{NH}>)$, where $<\text{NH}>$ is a listing of the procedure NH. From the specification of H we know that the execution $H(<\text{NH}>,<\text{NH}>)$ either outputs YES or NO.

Case $H(<\text{NH}>,<\text{NH}>)$ outputs YES: Then by the specification/construction of NH, the execution $NH(<\text{NH}>)$ loops. Thus by the specification of H, the execution $H(<\text{NH}>,<\text{NH}>)$ outputs NO. Contradiction!

Case $H(<\text{NH}>,<\text{NH}>)$ outputs NO: Then by the specification/construction of NH, the execution $NH(<\text{NH}>)$ stops. Thus by the specification of H, the execution $H(<\text{NH}>,<\text{NH}>)$ outputs YES. Contradiction again!

Since both case let to a contradiction we are done and the procedure H with the above specification cannot exist.