HW5 Solutions
Michał Dereziński
February 24, 2015

1 Exercise 4.3

(a) $S \rightarrow ASA | a \quad A \rightarrow a | b$

(b) $S \rightarrow ASA | aa | bb \quad A \rightarrow a | b$

(c) $S \rightarrow aCa | bDb \quad C \rightarrow ACA | a \quad D \rightarrow ADA | b \quad A \rightarrow a | b$

2 Exercise 4.10

(e) $S \rightarrow aSB | \Lambda \quad B \rightarrow b | bb | \Lambda$

(f) $S \rightarrow aSB | a \quad B \rightarrow b | bb | \Lambda$

3 Exercise 4.15

We use strong induction over the number n of rules in a derivation for a given word.

Inductive Hypothesis $H(n)$: *Any word w, that has a derivation with n rules in our CFG, has more a’s than b’s.*

Base case: $n = 1$. Only one rule allowed: $S \rightarrow a$. So $w = a$ and $H(1)$ holds.

Inductive step: Suppose that $H(k)$ holds for all $1 \leq k < n$. I will prove $H(n)$. Take a word w with a derivation

$$S \Rightarrow w_1 \Rightarrow ... \Rightarrow w_n = w.$$
 Naturally, w_1 has to be one of aS, bSS, SSb, or SbS, where any non-terminal S represents a subword of w with a derivation of length at most $n-1$, so we can apply the inductive hypothesis to it. For example, if $w_1 = aS$, then there is a word v such that $n_a(v) > n_b(v)$, where $w = av$, which means that

$$n_a(w) = n_a(v) + 1 > n_b(v) = n_b(w).$$

Similarly, if $w_1 = bSS$, then we have $w = bv_1v_2$ for some v_1, v_2, where $n_a(v_1) > n_b(v_1)$ and $n_a(v_2) > n_b(v_2)$, so

$$n_a(w) = n_a(v_1) + n_a(v_2) \geq (n_b(v_1)+1)+(n_b(v_2)+1) > n_b(v_1)+n_b(v_2)+1 = n_b(w).$$

The other two cases follow similarly. Thus, we conclude that $n_a(w) > n_b(w)$, and so $H(n)$ holds, concluding the induction.

4 Exercise 4.21

Definition 3.1 is a recursive definition of the class of regular languages over alphabet Σ, where every such language can be constructed from the basic building blocks, that are:

1. the empty language $\emptyset = \{\}$,
2. and, for every $a \in \Sigma$, a language with a single one-letter word: $\{a\}$.

We allow three operations for the constructions: $L_1 \cup L_2$, L_1L_2, and L_1^*. We perform structural induction to prove that for regular L, the following statement $P(L)$ is true: There is a CFG that generates L.

Base cases. Notice, that each of the basic languages can be generated by a CFG; for empty language we use a grammar with no productions, and we can get the language $\{a\}$ from a grammar with one production: $S \rightarrow a$. This concludes the base cases.

Inductive Step. We have to show that all three construction operations preserve property P, when we apply them to regular languages. Theorem 4.9 says that, in fact, P is closed under those operations (a stronger claim), so we obtain that if $P(L_1)$ and $P(L_2)$, then also $P(L_1 \cup L_2)$, $P(L_1L_2)$ and $P(L_1^*)$. This concludes the structural induction.
5 Exercise 4.22

We construct an NFA M, where the states are variables (non-terminals) from the grammar plus one additional state that is also the only accepting state: Z. We make variable S the start state. We create transitions as follows:

1. For every $A \rightarrow aB$, we add a transition $A \xrightarrow{a} B$.
2. For every $A \rightarrow a$, we add a transition $A \xrightarrow{a} Z$.
3. For every $A \rightarrow \Lambda$, we add a transition $A \xrightarrow{\Lambda} Z$.

M accepts the same language as the grammar, because every path from start state to accept state corresponds to a derivation in the grammar (and vice versa).

6 Exercise 4.29 (b)

The grammar corresponds to the regular expression $(a + b)^*ab(ab + b)^+$. To obtain a regular grammar, it is useful to construct an NFA for the language.

A DFA for this is

and therefore, the regular grammar is

\[
\begin{align*}
S & \rightarrow aS \mid bS \mid aA \\
A & \rightarrow bB \\
B & \rightarrow aC \mid bD \\
C & \rightarrow bD \\
D & \rightarrow aC \mid bD \mid \Lambda.
\end{align*}
\]
7 Exercise 4.34

To show that the grammar is ambiguous, I must simply exhibit a string with two different parse trees.

Consider the string $x = ababa$. The two parse trees are:

```
S
  |   |
  b   S
  |
  a   a
```

8 Exercise 4.37

Consider the string $x = aababb$. The two parse trees are:

```
S
  |   |
  a   B
  |
  B   B
  |
  a   |
```

9 Exercise 4.54(c)

For full credit, you should show your work, including at least the following three stages.
Grammar after removing Λ-productions:

\[S \rightarrow AaA \mid CA \mid BaB \mid A \mid aA \mid Aa \mid a \mid C \]
\[A \rightarrow aaBa \mid CDA \mid aa \mid DC \mid CA \mid DA \mid D \mid A \mid CD \]
\[B \rightarrow bB \mid bAB \mid bb \mid aS \mid a \]
\[C \rightarrow Ca \mid bC \mid D \mid b \mid a \]
\[D \rightarrow bD \mid b. \]

Grammar after removing unit productions:

\[S \rightarrow AaA \mid CA \mid BaB \mid aA \mid Aa \mid aAaA \mid CDA \]
\[\mid aa \mid DC \mid DA \mid CD \mid Ca \mid bC \mid b \mid bD \]
\[A \rightarrow aaBa \mid CDA \mid aa \mid DC \mid CA \mid DA \mid CD \mid Ca \mid bC \mid b \mid a \mid bD \]
\[B \rightarrow bB \mid bAB \mid bb \mid aS \mid a \]
\[C \rightarrow Ca \mid bC \mid b \mid a \mid bD \]
\[D \rightarrow bD \mid b. \]

Final grammar after Chomskyization:

\[S \rightarrow EA \mid CA \mid FB \mid XA \mid AX \mid a \mid HX \mid IA \]
\[\mid XX \mid DC \mid DA \mid CD \mid CX \mid YC \mid b \mid YD \]
\[A \rightarrow HX \mid IA \mid XX \mid DC \mid CA \mid DA \mid CD \mid CX \mid YC \mid b \mid a \mid YD \]
\[B \rightarrow YB \mid JB \mid YY \mid XS \mid a \]
\[C \rightarrow CX \mid YC \mid b \mid a \mid YD \]
\[D \rightarrow YD \mid b \]

\[E \rightarrow AX \quad F \rightarrow BX \quad G \rightarrow XX \quad H \rightarrow GB \]
\[I \rightarrow CD \quad J \rightarrow YA \quad X \rightarrow a \quad Y \rightarrow b. \]

10 Exercise 4.16

Let us call the language generated by the grammar as \(L_G \). The proof consists of two parts. First, we have to show that any word \(w \in L \) has a derivation in the grammar (so, \(w \in L_G \)). Second, we will prove that any word \(w \in L_G \) (i.e. with a derivation) satisfies the property \(n_a(w) = n_b(w) \) (i.e. \(w \in L \)).
1. For \(n \geq 0 \), we prove inductive hypothesis \(H(n) \): Every word \(w \in L \) of length \(n \) has a derivation in the grammar.

Base case. Let \(n = 0 \). So, \(w = \Lambda \) and the derivation is \(S \Rightarrow \Lambda \).

Inductive Step. Suppose that \(H(k) \) holds for any \(0 \leq k < n \) (strong induction, \(n \geq 1 \)). Take \(w \in L \), such that \(|w| = n \). Let \(x \) denote the first letter in \(w \). We have two cases:

(a) If \(x = a \), then clearly, if there is a derivation for \(w \), it has to start with the production \(S \rightarrow aSbS \). For this derivation to exist, the word has to be of the form \(w = av_i bv_i' \), where \(v_i, v_i' \in L_G \) and \(i \) represents the position of the separating letter \(b \) in \(w \) (so \(v_i = w[2..i-1] \) and \(v_i' = w[i+1..n] \)). Notice, that \(n_b(w) = n_a(w) \geq 1 \), so \(w \) must contain a letter \(b \). Now, we will show that there exists such letter \(b \) at some position \(i \) in \(w \), that the subword \(v_i \) (possibly empty) satisfies \(n_a(v_i) = n_b(v_i) \). For the sake of contradiction, suppose this is not true. It implies that the last letter in \(w \) also has to be \(a \), because otherwise using \(v_n \) would lead to contradiction. Therefore, \(v_n \) has to have more \(b \)'s than \(a \)'s to balance out \(w \). Denote

\[d(i) = n_b(v_i) - n_a(v_i). \]

Like we said, \(d(n) > 0 \), and moreover \(d(2) = 0 \). Since, the value \(d(i) \) only changes by 1 between two consecutive input numbers, there has to be \(2 \leq i \leq n \) such that \(d(i) = 0 \) and \(d(i+1) = 1 \). This means that there has to be a letter \(b \) at position \(i \) (since the function increases from \(i \) to \(i+1 \)), and so we get a contradiction.

We showed that there exists a partitioning \(w = av_i bv_i' \), such that \(v_i, v_i' \in L \). By inductive hypothesis, since \(|v_i|, |v_i'| < n \), we find that \(v_i, v_i' \in L_G \), so both derivations can be completed in our grammar, showing that \(w \in L_G \).

(b) If \(x = b \), then we repeat the above argument (with the roles of \(a \) and \(b \) reversed), for the production

\[S \rightarrow bSaB, \]

obtaining, again, that \(w \in L_G \), which ends the induction.

2. We will prove the second part also by induction. For \(n \geq 0 \), we prove inductive hypothesis \(H(n) \): Every word \(w \) having a derivation with \(n \) productions is in \(L \).
Base case. Let $n = 1$. So, $w = \Lambda$, and obviously $w \in L$.

Inductive Step. Suppose that $H(k)$ holds for any $0 \leq k < n$ (strong induction, $n \geq 2$). Take a word w with a derivation

$$S \Rightarrow w_1 \Rightarrow \ldots \Rightarrow w_n = w.$$ Naturally, w_1 has to be one of $aSbS$, $bSaS$. In either case, w consists of two subwords v_i, v'_i, which, having shorter derivations must be in L (by inductive hypothesis). Since, both productions introduce the same number of a’s and b’s, the entire word w will remain balanced (concluding the induction):

$$n_a(w) = 1 + n_a(v_i) + n_a(v'_i) = 1 + n_b(v_i) + n_b(v'_i) = n_b(w).$$