More About Turing Machines

"Programming Tricks"
Restrictions
Extensions
Closure Properties

Overview

- At first, the TM doesn't look very powerful.
 - Can it really do anything a computer can?
- Need: higher-level programming abstractions (e.g. subroutines) for TMs
- These tricks help show that TMs can simulate a real computer.

Overview – (2)

- We need to study restrictions on the basic TM model (e.g., tapes infinite in only one direction).
- Assuming a restricted form makes it easier to talk about simulating arbitrary TM's.
 - That's essential to exhibit a language that is not recursively enumerable.

Overview – (3)

- We also need to study generalizations of the basic model.
- Needed to argue there is no more powerful model of what it means to "compute."
- **Example:** A nondeterministic TM with 50 six-dimensional tapes is no more powerful than the basic model.

Programming Trick: Multiple Tracks or Compound Symbols

- Think of tape symbols as vectors with k components.
- Each component chosen from a finite alphabet.
- Makes the tape appear to have k tracks.
- Let input symbols be blank in all but one track.

Picture of Multiple Tracks

0 \[X\] B
B \[Y\] B
B \[Z\] B

Represents input symbol 0
Represents the blank
Represents one symbol \([X,Y,Z]\)
Programming Trick: Marking

- A common use for an extra track is to mark certain positions.
- Almost all cells hold B (blank) in this track, but several hold special symbols (marks) that allow the TM to go back to particular places on the tape (like bookmarks).

Programming Trick: Caching in the State

- The state can also be a vector.
- First component is the “control state.”
- Other components hold data from a finite alphabet.
- State used to control computation and remember some (finite) information
 - Like a couple of symbols recently read

Example: Using These Tricks

- This TM doesn’t do anything terribly useful; it copies its input w infinitely.
- Control states:
 - q: Mark your position and remember the input symbol seen.
 - p: Run right, remembering the symbol and looking for a blank. Deposit symbol.
 - r: Run left, looking for the mark.

Example – (2)

- States have the form [x, Y], where x is q, p, or r and Y is 0, 1, or B.
 - Only p needs memory, uses 0 and 1.
- Tape symbols have the form [U, V].
 - U is either X (the “mark”) or “-”.
 - V is 0, 1 (the input symbols) or B.
 - [-, B] is the TM blank; [-, 0] and [-, 1] are the inputs.

The Transition Function

- Convention: a and b each stand for “either 0 or 1.”
- \(\delta([q,B], [a]) = ([p,a], [X,a], R) \).
 - In state q, copy the (unmarked) input symbol under the head (i.e., a) into the state.
 - Mark the position read.
 - Go to state p and move right.
Transition Function – (2)

\[\delta([p,a], [-,b]) = ([p,a], [-,b], R). \]

- In state \(p \), search right, looking for a blank symbol (not just \(B \) in the mark track).
- When you find a \(B \), replace it by the symbol \(a \) carried in the “cache.”
- Go to state \(r \) and move left.

Transition Function – (3)

\[\delta([r,B], [-,a]) = ([r,B], [-,a], L). \]

- In state \(r \), move left, looking for the mark.
- When the mark is found, go to state \(q \) and move right.
- But remove the mark from where it was.
- \(q \) will place a new mark and the cycle repeats.

Simulation of the TM

\[\begin{array}{c}
{\text{Marking track}} \\
\ldots \ldots \text{X} \ldots \ldots \\
\ldots B \ldots 0 \ldots 1 \ldots B \ldots B \ldots \\
\end{array} \]
Simulation of the TM

Simulation of the TM

Simulation of the TM

Semi-infinite Tape

We can assume the TM never moves left from the initial position of the head.
Let this position be 0; positions to the right are 1, 2, ... and positions to the left are −1, −2, ...
New TM has two tracks.

Top holds positions 0, 1, 2, ...
Bottom holds a marker, positions −1, −2, ...

Simulating Infinite Tape by Semi-infinite Tape

More Restrictions – Read in Text

Two stacks can simulate one tape.
One holds positions to the left of the head; the other holds positions to the right.
In fact, by a clever construction, the two stacks can be counters (only two stack symbols, one of which can only appear at the bottom).

Factoid: Invented by Pat Fischer, whose main claim to fame is that he was a victim of the Unabomber.
Extensions
- More general than the standard TM.
- But still only able to define the RE languages.
 1. Multitape TM.
 2. Nondeterministic TM.
- Dictionary ADT (list of key-value pairs).

Multitape Turing Machines
- Allow a TM to have k tapes for any fixed k.
- Move of the TM depends on the state and the symbols under the head for each tape.
- In one move, the TM can change state, write symbols under each head, and move each head independently.

Simulating k Tapes by One
- Use $2k$ tracks.
- Each tape of the k-tape machine is represented by a track.
- The head position for each track is represented by a mark on an additional track.

Nondeterministic TM’s
- Allow the TM to have a choice of move at each step (what is δ?)
 - Each choice is a state-symbol-direction triple, as for the deterministic TM.
 - The TM accepts its input if any sequence of choices leads to an accepting state.

Simulating a NTM by a DTM
- Breadth-first search of reachable IDs
- The DTM maintains on its tape a queue of ID’s of the NTM.
- A second track is used to mark certain positions:
 1. A mark for the ID at the head of the queue.
 2. A mark to help copy the ID at the head and make a one-move change.
Operation of the Simulating DTM

- The DTM finds the ID at the current front of the queue.
- It looks for the state in that ID so it can determine the moves permitted from that ID.
- If there are m possible moves, it creates m new ID's, one for each move, at the rear of the queue.

Why the NTM -> DTM Construction Works

- There is an upper bound, say k, on the number of choices of move of the NTM for any state/symbol combination.
- Thus, any ID reachable from the initial ID by n moves of the NTM will be constructed by the DTM after constructing at most $(k^{n+1}-k)/(k-1)$ ID's.
- Sum of $k+k^2+\ldots+k^n$
Real Computers

- Recall that, since a real computer has finite memory, it is in a sense weaker than a TM.
- Imagine a computer with an infinite store for name-value pairs.
 > Generalizes an address space.

Simulating a Name-Value Store by a TM

- The TM uses one of several tapes to hold an arbitrarily large sequence of name-value pairs in the format #name*value#...
- Mark, using a second track, the left end of the sequence.
- A second tape can hold a name whose value we want to look up.

Lookup

- Starting at the left end of the store, compare the lookup name with each name in the store.
- When we find a match, take what follows between the * and the next # as the value.

Insertion

- Suppose we want to insert name-value pair (n, v), or replace the current value associated with name n by v.
- Perform lookup for name n.
- If not found, add n*v# at the end of the store.

Insertion – (2)

- If we find #n*v', we need to replace v' by v.
- If v is shorter than v', you can leave blanks to fill out the replacement.
- But if v is longer than v', you need to make room.

Insertion – (3)

- Use a third tape to copy everything from the first tape at or to the right of v'.
- Mark the position of the * to the left of v' before you do.
- Copy from the third tape to the first, leaving enough room for v.
- Write v where v' was.
Closure Properties of Recursive and RE Languages

- **Recursively Enumerable**: accepted by TM
- **Recursive**: accepted by TM that halts on all inputs
- Both closed under union, concatenation, star, reversal, intersection
- Recursive closed under difference, complementation (but RE isn't)

Union

- Let \(L_1 = L(M_1) \) and \(L_2 = L(M_2) \).
- Assume \(M_1 \) and \(M_2 \) are single-semi-infinite-tape TM's.
- Construct 2-tape TM \(M \) to copy its input onto the second tape and simulate the two TM's \(M_1 \) and \(M_2 \) each on one of the two tapes, “in parallel.”

Union – (2)

- **Recursive languages**: If \(M_1 \) and \(M_2 \) are both algorithms, then \(M \) will always halt in both simulations.
- **Accept if either accepts.**
- **RE languages**: accept if either accepts, but you may find both TM’s run forever without halting (rejecting) or accepting.

Picture of Union/Recursive

Picture of Union/RE

Intersection/Recursive – Same Idea
Intersection/RE

- Let $L_1 = L(M_1)$ and $L_2 = L(M_2)$.
- Assume M_1 and M_2 are single-semi-infinite-tape TM's.
- Construct 2-tape Nondeterministic TM M:
 1. Guess a break in input $w = xy$.
 2. Copy y to second tape (erase y on first tape).
 3. Simulate M_1 on x, M_2 on y.
 4. Accept if both accept.

Difference, Complement

- Recursive languages: both TM's will eventually halt.
- Accept if M_1 accepts and M_2 does not.
 - Corollary: Recursive languages are closed under complementation.
- RE Languages: can't do it; M_2 may never halt, so you can't be sure input is in the difference.

Concatenation/RE

- Let $L_1 = L(M_1)$ and $L_2 = L(M_2)$.
- Assume M_1 and M_2 are single-semi-infinite-tape TM's.
- Construct 2-tape Nondeterministic TM M:
 1. Guess a break in input $w = xy$.
 2. Copy y to second tape (erase y on first tape).
 3. Simulate M_1 on x, M_2 on y.
 4. Accept if both accept.

Concatenation/Recursive

- Can't use a NTM.
- Systematically try each break $w = xy$.
- M_1 and M_2 will eventually halt for each break.
- Accept if both accept for any one break.
- Reject if all breaks tried and none lead to acceptance.

Star

- Same ideas work for each case.
- RE: guess many breaks, accept if M_1 accepts each piece.
- Recursive: systematically try all ways to break input into some number of pieces.

Reversal

- Start by reversing the input.
- Then simulate TM for L to accept w if and only w^R is in L.
- Works for either Recursive or RE languages.
Inverse Homomorphism
- Apply h to input w.
- Simulate TM for L on $h(w)$.
- Accept w iff $h(w)$ is in L.
- Works for Recursive or RE.

Homomorphism/RE
- Let $L = L(M_1)$.
- Design NTM M to take input w and guess an x such that $h(x) = w$.
- M accepts whenever M_1 accepts x.
- **Note**: won't work for Recursive languages.