Decidability

Turing Machines Coded as Binary Strings
Diagonalizing over Turing Machines
Problems as Languages
Undecidable Problems

Integers, Strings, and Other Things

Data types have become very important as a programming tool.
But at another level, there is only one type, which you may think of as integers or strings.
Key point: Strings that are programs are just another way to think about the same one data type.

Example: Text

- Strings of ASCII or Unicode characters can be thought of as binary strings, with 8 or 16 bits/character.
- Binary strings can be thought of as integers.
- It makes sense to talk about “the i-th string.”

Binary Strings to Integers

- There’s a small glitch:
 - If you think simply of binary integers, then strings like 101, 0101, 00101,… all appear to be “the fifth string.”
- Fix by prepending a “1” to the string before converting to an integer.
 - Thus, 101, 0101, and 00101 are the 13th, 21st, and 37th strings, respectively.
 - Also handles empty string

Example: Images

- Represent an image in (say) GIF.
- The GIF file is an ASCII string.
- Convert string to binary.
- Convert binary string to integer.
- Now we have a notion of “the i-th image.”

Example: Proofs

- A formal proof is a sequence of logical expressions, each of which follows from the ones before it.
- Encode mathematical expressions of any kind in Unicode.
- Convert expression to a binary string and then an integer.
Proofs – (2)

-but a proof is a sequence of expressions, so we need a way to separate them. Also, we need to indicate which expressions are given.

Proofs – (3)

- Quick-and-dirty way to introduce new symbols into binary strings:
 1. Given a binary string, precede each bit by 0.
 - Example: 101 becomes 01001.
 2. Use strings of two or more 1's as the special symbols.
 - Example: 111 = "the following expression is given"; 11 = "end of expression."

Example: Encoding Proofs

Example: Programs

- Programs are just another kind of data.
- Represent a program in ASCII.
- Convert to a binary string, then to an integer.
- Thus, it makes sense to talk about "the i-th program."
- Hmm...There aren't all that many programs.

Finite Sets

- Intuitively, a finite set is a set for which there is a particular integer that is the count of the number of members.
- Example: \{a, b, c\} is a finite set; its cardinality is 3.
- It is impossible to find a 1-1 mapping between a finite set and a proper subset of itself.

Infinite Sets

- Formally, an infinite set is a set for which there is a 1-1 correspondence between itself and a proper subset of itself.
- Example: the positive integers \{1, 2, 3,...\} is an infinite set.
- There is a 1-1 correspondence 1<->2, 2<->4, 3<->6,... between this set and a proper subset (the set of even integers).
Countable Sets

- A **countable set** is a set with a 1-1 correspondence with the positive integers.
 - Hence, all countable sets are infinite.
 - **Example:** All integers.
 - 0 ↔ 1; -i ↔ 2i; +i ↔ 2i+1.
 - Thus, order is 0, -1, 1, -2, 2, -3, 3, …
 - **Examples:** set of binary strings, set of Java programs.

Example: Pairs of Integers

- Order the pairs of positive integers first by sum, then by first component:
 - [1,1], [2,1], [1,2], [3,1], [2,2], [1,3], [4,1], [3,2], …, [1,4], [5,1], …
 - **Interesting exercise:** figure out the function f(i,j) such that the pair [i,j] corresponds to the integer f(i,j) in this order.

Enumerations

- An **enumeration** of a set is a 1-1 correspondence between the set and the positive integers.
 - Thus, we have seen enumerations for strings, programs, proofs, and pairs of integers.

How Many Languages?

- Are the languages over \{0,1\}* countable?
 - No; here’s a **proof**.
 - Suppose we could enumerate all languages over \{0,1\}* and talk about “the i-th language.”
 - Consider the language \(L = \{ w | w \text{ is the } i\text{-th binary string and } w \text{ is not in the } i\text{-th language}\}.

Proof – Continued

- Clearly, \(L\) is a language over \{0,1\}*
 - Thus, it is the j-th language for some particular j.
 - Let x be the j-th string.
 - Is x in L?
 - If so, x is not in L by definition of L.
 - If not, then x is in L by definition of L.

Diagonalization Picture

<table>
<thead>
<tr>
<th>Strings</th>
<th>Languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Diagonalization Picture

Proof – Concluded

- We have a contradiction: x is neither in L nor not in L, so our sole assumption (that there was an enumeration of the languages) is wrong.
- **Comment**: This is really bad; there are more languages than programs.
- E.g., there are languages with no membership algorithm.

Non-Constructive Arguments

- We have shown the existence of a language with no algorithm to test for membership, but we have no way to exhibit a particular language with that property.
- A proof by counting the things that fail and claiming they are fewer than all things is called a Hungarian argument.

Binary-Strings from TM’s

- We shall restrict ourselves to TM’s with input alphabet \{0, 1\}.
- Assign positive integers to the three classes of elements involved in moves:
 1. States: q₁ (start state), q₂ (final state), q₃, ...
 2. Symbols X₁ (0), X₂ (1), X₃ (blank), X₄, ...
 3. Directions D₁ (L) and D₂ (R).

Binary Strings from TM’s – (2)

- Suppose \(\delta(qᵢ, Xⱼ) = (qₖ, Xₐ, Dₘ) \).
- Represent this rule by string \(0^i1^j10^k10^a10^m \).
- Key point: since integers \(i, j, \ldots \) are all > 0, there cannot be two consecutive 1’s in these strings.

Binary Strings from TM’s – (2)

- Represent a TM by concatenating the codes for each of its moves, separated by 11 as punctuation.
 - That is: Code₁11Code₂111Code₃11 ...
Enumerating TM’s and Binary Strings

Recall we can convert binary strings to integers by prepending a 1 and treating the resulting string as a base-2 integer.

Thus, it makes sense to talk about “the i-th binary string” and about “the i-th Turing machine.”

Note: if i makes no sense as a TM, assume the i-th TM accepts nothing.

Table of Acceptance

<table>
<thead>
<tr>
<th>String j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>...</td>
</tr>
<tr>
<td>x = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

x = 0 means the i-th TM does not accept the j-th string; 1 means it does.

Diagonalization Again

Whenever we have a table like the one on the previous slide, we can diagonalize it.

That is, construct a sequence D by complementing each bit along the major diagonal.

Formally, D = a_1a_2..., where a_i = 0 if the (i, i) table entry is 1, and vice-versa.

The Diagonalization Argument

Could D be a row (representing the language accepted by a TM) of the table?

Suppose it were the j-th row.

But D disagrees with the j-th row at the j-th column.

Thus D is not a row.

Diagonalization – (2)

Consider the diagonalization language L_d = {w | w is the i-th string, and the i-th TM does not accept w}.

We have shown that L_d is not a recursively enumerable language; i.e., it has no TM.

Problems

Informally, a “problem” is a yes/no question about an infinite set of possible instances.

Example: “Does graph G have a Hamilton cycle (cycle that touches each node exactly once)?

Each undirected graph is an instance of the “Hamilton-cycle problem.”
Problems – (2)

◆ Formally, a problem is a language.
◆ Each string encodes some instance.
◆ The string is in the language if and only if the answer to this instance of the problem is “yes.”

Example: A Problem About Turing Machines

◆ We can think of the language L_d as a problem.
◆ “Does this TM not accept its own code?”
◆ Aside: We could also think of it as a problem about binary strings.
 ◆ Do you see how to phrase it?

Decidable Problems

◆ A problem is **decidable** if there is an algorithm to answer it.
 ◆ Recall: An “algorithm,” formally, is a TM that halts on all inputs, accepted or not.
 ◆ Put another way, “decidable problem” = “recursive language.”
 ◆ Otherwise, the problem is **undecidable**.

Bullseye Picture

![Bullseye Picture]

From the Abstract to the Real

◆ While the fact that L_d is undecidable is interesting intellectually, it doesn’t impact the real world directly.
◆ We first shall develop some TM-related problems that are undecidable, but our goal is to use the theory to show some real problems are undecidable.

Looking ahead: Undecidable Problems

◆ Can a particular line of code in a program ever be executed?
◆ Is a given context-free grammar ambiguous?
◆ Do two given CFG’s generate the same language?
The Universal Language

- An example of a recursively enumerable, but not recursive language is the language L_u of a universal Turing machine.
- That is, the UTM takes as input the code for some TM M and some binary string w and accepts if and only if M accepts w.

Designing the UTM

- Inputs are of the form: Code for $M 111 w$
- Note: A valid TM code never has 111, so we can split M from w.
- The UTM must accept its input if and only if M is a valid TM code and that TM accepts w.

The UTM – (2)

- The UTM will have several tapes.
- Tape 1 holds the input $M111w$
- Tape 2 holds the encoded tape of M.
 - Mark the current head position of M.
- Tape 3 holds the state of M.
- Tape 4 for scratch space

The UTM – (3)

- Step 1: The UTM checks that M is a valid code for a deterministic TM.
 - E.g., all moves have five components, no two moves have the same state/symbol as first two components.
- If M is not valid, its language is empty, so the UTM immediately halts without accepting.

The UTM – (4)

- Step 2: Initialize Tape 2 to represent the tape of M with the encoding of input w, and initialize Tape 3 to hold the start state.

The UTM – (5)

- Step 3: Simulate M.
 - Look for a move on Tape 1 that matches the state on Tape 3 and the tape symbol under the head on Tape 2.
 - If found, change the symbol and move the head marker on Tape 2 and change the State on Tape 3.
 - If M accepts, the UTM also accepts.
 - How to formally prove this?
A Question

Do we see anything like universal Turing machines in real life?

Proof That L_U is Recursively Enumerable, but not Recursive

- U is a TM for $L_U = \{M111w \mid M \text{ accepts } w\}$, so it is surely RE.
- Suppose it were recursive; so there is a UTM for L_U that always halted.
- Then we could also design an algorithm for $L_d = \{w \mid w \text{ is the } i\text{-th string, and the } i\text{-th TM does not accept } w\}$ as follows.

Proof – (2)

- Given input w, we can decide if it is in L_d by the following steps.
 1. Check that w is a valid TM code.
 - If not, then its language is empty, so w is in L_d.
 2. If valid, use the hypothetical algorithm to decide whether $w111w$ is in L_U.
 3. If so, then w is not in L_d; else it is.

Proof – (3)

- But we already know there is no algorithm for L_d.
- Thus, our assumption that there was an always-halting algorithm for L_U is wrong.
- L_U is RE, but not recursive.

Bullseye Picture

The Halting problem

- $L_H = \{M111w \mid M \text{ halts on input } w\}$
- L_H encodes problem: does M halt on w?
- L_H is in RE: use universal TM U to simulate M on w, and accept if simulation halts.
- L_H is not Recursive: If there was a TM H that accepted L_H and always halted, then we could build a TM that accepts L_U and always halts (showing L_U Recursive).
Rice’s Theorem:

- Every non-trivial property of the RE languages is undecidable.
 - Is $L(M)$ a regular language?
 - Is $L(M)$ a CFL?
 - Does $L(M)$ include any palindromes?
 - Is $L(M)$ empty?
 - Does $L(M)$ contain more than 1000 strings?
 - Etc., etc.