Introduction to Finite Automata

Languages
Deterministic Finite Automata
Representations of Automata

From Jeff Ullman

Alphabets

◆ An alphabet is any finite set of symbols.
◆ Examples: ASCII, Unicode, \{a,b,c\}, binary alphabet \{0,1\}.

Strings (words)

◆ The set of strings over an alphabet \(\Sigma\) is the set of lists, each element of which is a member of \(\Sigma\).
 ◆ Strings shown with no commas, e.g., abc
 ◆ \(\Sigma^*\) denotes this set of strings. \((\Sigma^n)\)
 ◆ \(\epsilon\) stands for the empty string (string of length 0).

Example: Strings

◆ \(\{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots \}\)
◆ Subtlety: 0 as a string, 0 as a symbol look the same.
 ◆ Context determines the type.

Languages

◆ A language is a subset of \(\Sigma^*\) for some alphabet \(\Sigma\).
◆ Example: The set of strings of 0's and 1's with no two consecutive 1's.
 ◆ \(L = \{\epsilon, 0, 1, 00, 10, 000, 001, 010, 100, 101, 0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010, \ldots \}\)

Hmm... 1 of length 0, 2 of length 1, 3 of length 2, 5 of length 3, 8 of length 4. I wonder how many of length 5?

Deterministic Finite Automata

◆ A formalism for defining languages, consisting of:
 ◆ A finite set of states \((Q, \text{typically})\).
 ◆ An input alphabet \((\Sigma, \text{typically})\).
 ◆ A transition function \((\delta, \text{typically})\).
 ◆ A start state \((q_0, \text{in } Q, \text{typically})\).
 ◆ A set of final states \((F \subseteq Q, \text{typically})\).
 ◆ “Final” and “accepting” are synonyms.
The Transition Function

◆ Takes two arguments: a state and an input symbol.
◆ δ(q, a) = the state that the DFA goes to when it is in state q and input a is received.

Graph Representation of DFA’s

◆ Nodes = states.
◆ Arcs represent transition function.
 ◦ Arc from state p to state q labeled by all those input symbols that have transitions from p to q.
◆ Arrow labeled “Start” to the start state.
◆ Final states indicated by double circles.

Example: Graph of a DFA

Accepts all strings without two consecutive 1’s.

Extended Transition Function

◆ We describe the effect of a string of inputs on a DFA by extending δ to a state and a string.
◆ Induction on length of string.
◆ Basis: δ(q, ε) = q
◆ Induction: δ(q, wa) = δ(δ(q, w), a)
 ◦ w is a string; a is an input symbol.

Alternative Representation: Transition Table

Final states starred

Columns = input symbols

Extended δ: Intuition

◆ Convention:
 ◦ ... w, x, y, z are strings.
 ◦ a, b, c... are single symbols.
◆ Extended δ is computed for state q and inputs a_1a_2...a_n by following a path in the transition graph, starting at q and selecting the arcs with labels a_1, a_2,...,a_n in turn.
Example: Extended Delta

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

$\delta(B,011) = \delta(\delta(B,01),1) = \delta(\delta(\delta(B,0),1),1) = \delta(\delta(A,1),1) = \delta(B,1) = C$

Delta-hat

- In book, the extended δ has a “hat” to distinguish it from δ itself.
- Not needed, because both agree when the string is a single symbol.
- $\delta(q, a) = \delta(\delta(q, \epsilon), a) = \delta(q, a)$

Language of a DFA

- Automata of all kinds define languages.
- If A is an automaton, $L(A)$ is its language.
- For a DFA A, $L(A)$ is the set of strings labeling paths from the start state to a final state.
- Formally: $L(A) = \{ w | \delta(q_0, w) \text{ is in } F \}$

Example: String in a Language

String 101 is in the language of the DFA below. Start at A.

Example: String in a Language

String 101 is in the language of the DFA below. Start at A.

Example: String in a Language

String 101 is in the language of the DFA below. Start at A.
Example: String in a Language
String 101 is in the language of the DFA below.
Finally arc labeled 1 from current state A. Result is an accepting state, so 101 is in the language.

Example – Concluded
The language of our example DFA is:
\{w \mid w \text{ is in } \{0,1\}^* \text{ and } w \text{ does not have two consecutive 1's}\}

Proofs of Set Equivalence
◆ Often, we need to prove that two descriptions of sets are in fact the same set.
◆ Here, one set is “the language of this DFA,” and the other is “the set of strings of 0’s and 1’s with no consecutive 1’s.”

Proofs – (2)
◆ In general, to prove $S=T$, we need to prove two parts: $S \subseteq T$ and $T \subseteq S$.
That is:
◆ If w is in S, then w is in T.
◆ If w is in T, then w is in S.
◆ As an example, let $S =$ the language of our running DFA, and $T =$ “no consecutive 1’s.”

Part 1: $S \subseteq T$
◆ To prove: if w is accepted by then w has no consecutive 1’s.
◆ Proof is an induction on length of w.
◆ Important trick: Expand the inductive hypothesis to be more detailed than you need.

IH(n) is: for all strings w of length n,
1. If $\delta(A, w) = A$, then w has no consecutive 1’s and does not end in 1.
2. If $\delta(A, w) = B$, then w has no consecutive 1’s and ends in a single 1.
◆ Basis: Show IH(0)
 ◆ if $|w| = 0$ then $w = \epsilon$ and $\delta(A, w) = A$.
 ◆ (1) holds since ϵ has no 1’s at all.
 ◆ (2) holds vacuously, since $\delta(A, \epsilon)$ is not B.
Inductive Step

Assume $n \geq 0$ and IH(n) to show IH(n+1). (i.e. show (1) and (2) for an arbitrary word w of length $n+1$)
Because $|w| \geq 1$, we can write $w = xa$, where a is the last symbol of w, and x is the string that precedes a.

| $|x| = n$, so (1) and (2) are true for x (using IH(n)) |

Inductive Step – (2)

Need to prove (1) and (2) for $w = xa$.

(1) for w is: If $\delta(A, w) = A$, then w has no consecutive 1’s and does not end in 1.

Since $\delta(A, w) = A$, $\delta(A, x)$ must be A or B, and a must be 0 (look at the DFA).

By the IH, x has no 11’s.
Thus, w has no 11’s and does not end in 1.

Inductive Step – (3)

Now, prove (2) for $w = xa$: If $\delta(A, w) = B$, then w has no 11’s and ends in 1.

Since $\delta(A, w) = B$, $\delta(A, x)$ must be A, and a must be 1 (look at the DFA).

By the IH, x has no 11’s and does not end in 1.
Thus, w has no 11’s and ends in 1.

Part 2: $T \subseteq S$

Now, we must prove: if w has no 11’s, then w is accepted by T.
Contrapositive: If w is not accepted by T, then w has 11.

Using the Contrapositive

Consider an arbitrary w not in $L(DFA)$
FACT: Every string takes the DFA to exactly one state
Simple inductive proof based on:
- Every state has exactly one transition on 1, one transition on 0.
- The only way w is not accepted is if it gets to C

Using the Contrapositive – (2)

The only way to get to C [formally: $\delta(A, w) = C$] is if $w = x1y$, x gets to B, and y is the tail of w that follows what gets to C for the first time.

If $\delta(A, x) = B$ then $x = z1$ for some z.
Since B has just one incoming arc
Thus, $w = x1y = z11y$ and has 11.
Regular Languages

A language L is regular if it is the language accepted by some DFA.

- Note: the DFA must accept only the strings in L, no others.
- Some languages are not regular.
 - Intuitively, regular languages “cannot count” to arbitrarily high integers.

Some languages are not regular.

Example: A Nonregular Language

$L_1 = \{0^n1^n \mid n \geq 1\}$

- Note: a^i is conventional for i copies of a.
 - Thus, $0^4 = 0000$, e.g.
 - Read: “The set of strings consisting of n 0’s followed by n 1’s, such that n is at least 1.
 - Thus, $L_1 = \{01, 0011, 000111, ...\}$

Another Example

$L_2 = \{w \mid w \in \{\text{'(,)'}\}^* \text{ and w is balanced}\}$

- Note: alphabet consists of the parenthesis symbols ‘(’ and ‘)’.
- Balanced parens are those that can appear in an arithmetic expression.
 - E.g.: (), ()(), (()), (()()), ...

But Many Languages are Regular

- Regular Languages can be described in many ways, e.g., regular expressions.
- They appear in many contexts and have many useful properties.
- Example: the strings that represent floating point numbers in your favorite language is a regular language.

Example: A Regular Language

$L_3 = \{w \mid w \in \{0,1\}^* \text{ and w, viewed as a binary integer is divisible by 23}\}$

- The DFA:
 - 23 states, named 0, 1,...,22.
 - Correspond to the 23 remainders of an integer divided by 23.
 - Start and only final state is 0.

Transitions of the DFA for L_3

- If string w represents integer i, then assume $\delta(0, w) = i \% 23$.
- Then $w0$ represents integer $2i$, so we want $\delta(i \% 23, 0) = (2i) \% 23$.
- Similarly: $w1$ represents $2i+1$, so we want $\delta(i \% 23, 1) = (2i+1) \% 23$.
- Example: $\delta(15, 0) = 30 \% 23 = 7$; $\delta(11, 1) = 23 \% 23 = 0$.

Key idea: design a DFA by figuring out what each state needs to remember about the past.
Another Example

$L_4 = \{ w | w \in \{0,1\}^* \text{ and } w, \text{ viewed as the reverse of a binary integer is divisible by 23} \}$

• Example: 01110100 is in L_4, because its reverse, 00101110 is 46 in binary.
• Hard to construct the DFA.
• But a theorem says the reverse of a regular language is also regular.