Decision Properties of Regular Languages

General Discussion of "Properties"
The Pumping Lemma
Membership, Emptiness, Etc.
Modified from Jeff Ullman's slides

Properties of Language Classes

- A language class is a set of languages.
 - We have seen the regular languages.
 - We'll see other classes in this course.
- Language classes have two important kinds of properties:
 1. Decision properties.
 2. Closure properties.

Representation of Languages

- Representations can be formal or informal.
- Example (effective): represent a language by a RE or DFA defining it.
- Example: (non-effective): a logical or prose statement about its strings:
 - \(\{0^n1^n \mid n \text{ is a nonnegative integer} \} \)
 - "The set of strings consisting of some number of 0's followed by the same number of 1's."

Decision Properties

- A decision property for a class of languages is an algorithm that takes an effective description of a language (e.g., a DFA) and tells whether or not some property holds.
- Example: Is language L empty?

Subtle Point: Representation Matters

- If description is "the empty language" then yes, otherwise no -- but there are tricky ways to describe \(\emptyset \)
- An effective representation is a DFA (or a RE that you will convert to a DFA).
- Can you tell if \(L(A) = \emptyset \) for DFA A?

Why Decision Properties?

- When we talked about protocols represented as DFA's, we noted that important properties of a good protocol were related to the language of the DFA.
- Example: "Does the protocol always terminate?" = "Is the language finite?"
- Example: "Can the protocol fail?" = "Is the language nonempty?"
Why Decision Properties – (2)

- We might want a “smallest” representation for a language, e.g., a minimum-state DFA or a shortest RE.
- If you can’t decide: “Are these two languages the same?”
 - I.e., do two DFA’s define the same language?
 - then you can’t find a “smallest.”

Closure Properties

- A closure property of a language class says that given languages in the class, an operator (e.g., union) produces another language in the same class.
- Example: the regular languages are obviously closed under union, concatenation, and (Kleene) closure.
 - Use the RE representation of languages.

Why Closure Properties?

1. Helps construct representations.
2. Helps show (informally described) languages not to be in the class.

Example: Use of Closure Property

- We can easily prove $L_1 = \{0^n1^n | n \geq 0\}$ is not a regular language.
- $L_2 =$ the set of strings with an = number of 0’s and 1’s isn’t either, but that fact is trickier to prove.
- Regular languages are closed under \cap.
- If L_2 were regular, then $L_2 \cap L(0^*1^*) = L_1$ would be, but it isn’t.

The Membership Question

- Our first decision property is the question: “is string w in regular language L?”
- Assume L is represented by a DFA A.
- Simulate the action of A on the sequence of input symbols forming w.

Example: Testing Membership

[Diagram showing a DFA with states A, B, and C, and transitions labeled with 0, 1, and 011 as the sequence of input symbols forming w.]
Example: Testing Membership

What if the Regular Language Is not Represented by a DFA?

- There is a circle of conversions from one form to another:

 ![Diagram](image)

1. RE
2. ε-NFA
3. NFA
4. DFA

Example: Testing Membership

Next symbol

Current state

Example: Testing Membership

Next symbol

Current state
The Emptiness Problem
- Given a regular language, does the language contain any string at all.
- Assume representation is DFA.
- Construct the transition graph.
- Compute the set of states reachable from the start state.
- If any final state is reachable, then yes, else no.

The Infiniteness Problem
- Is a given regular language infinite?
- Start with a DFA for the language.
- Key idea: if the DFA has \(n \) states, and the language contains any string of length \(n \) or more, then the language is infinite.
- Otherwise, the language is surely finite.
 - Limited to strings of length \(n \) or less.

Proof of Key Idea
- If an \(n \)-state DFA accepts a string \(w \) of length \(n \) or more, then there must be a state that appears twice on the path labeled \(w \) from the start state to a final state.
- Because there are at least \(n \) edges, and at least \(n+1 \) states, along the path.

Proof – (2)
- \(w = xyz \)
- Then \(xy^iz \) is in the language for all \(i > 0 \).
- Since \(y \) is not \(\varepsilon \), there are an infinite number of strings in \(L \).

Infiniteness – Continued
- We do not yet have an algorithm.
- There are an infinite number of strings of length > \(n \), and we can’t test them all.
- Second key idea: if there is a string of length \(\geq n \) (= number of states) in \(L \), then there is a string of length between \(n \) and \(2n-1 \).

Proof of 2nd Key Idea
- Remember:
- We can choose \(y \) to be the first cycle on the path.
- So \(|xy| \leq n \); in particular, \(1 \leq |y| \leq n \).
- Thus, if \(w \) is of length \(2n \) or more, there is a shorter string in \(L \) that is still of length at least \(n \).
- Keep shortening to reach \([n, 2n-1]\).
Completion of Infiniteness Algorithm

- Test for membership all strings of length between n and $2n-1$.
 - If any are accepted, then infinite, else finite.
- A terribly inefficient algorithm.
- Better: find cycles between the start state and a final state.

Finding Cycles

1. Eliminate states not reachable from the start state.
2. Eliminate states that do not reach a final state.
3. Test if the remaining transition graph has any cycles. (can use DFS)

The Pumping Lemma

- We have, almost accidentally, proved a statement that is quite useful for showing certain languages are not regular.
- Called the **pumping lemma for regular languages**.

Statement of the Pumping Lemma

For every regular language L

There is an integer n, such that

For every string w in L of length $\geq n$

We can write $w = xyz$ such that:

1. $|xy| \leq n$.
2. $|y| > 0$.
3. For all $i \geq 0$, xy^iz is in L.

Example: Use of Pumping Lemma

- We have claimed $\{0^k1^k \mid k \geq 1\}$ is not a regular language.
- Suppose it were. Then there would be an associated n for the pumping lemma.
- Let $w = 0^n1^n$. We can write $w = xyz$, where x and y consist of 0's, and $y \neq \varepsilon$.
- But then xy^2z would be in L, and this string has more 0's than 1's.

Decision Property: Equivalence

- Given regular languages L and M, is $L = M$?
- Algorithm involves constructing the **product DFA** from DFA's for L and M.
- Let these DFA's have sets of states Q and R, respectively.
- Product DFA has set of states $Q \times R$.
 - I.e., pairs $[q, r]$ with q in Q, r in R.
Product DFA – Continued

- Start state = \([q_0, r_0]\) (the start states of the DFA’s for \(L, M\)).
- Transitions: \(\delta([q, r], a) = [\delta_L(q, a), \delta_M(r, a)]\)
 - \(\delta_L, \delta_M\) are the transition functions for the DFA’s of \(L, M\).
 - That is, we simulate the two DFA’s in the two state components of the product DFA.

Example: Product DFA

Equivalence Algorithm

- Make the final states of the product DFA be those states \([q, r]\) such that exactly one of \(q\) and \(r\) is a final state of its own DFA.
- Thus, the product accepts \(w\) iff \(w\) is in exactly one of \(L\) and \(M\).

Example: Equivalence

Equivalence Algorithm – (2)

- The product DFA’s language is empty iff \(L = M\).
- But we already have an algorithm to test whether the language of a DFA is empty.

Decision Property: Containment

- Given regular languages \(L\) and \(M\), is \(L \subseteq M\)?
- Algorithm also uses the product automaton.
- How do you define the final states \([q, r]\) of the product so its language is empty iff \(L \subseteq M\)?
 - Answer: \(q\) is final; \(r\) is not.
Example: Containment

![Diagram of a state transition graph]

Note: the only final state is unreachable, so containment holds.

The Minimum-State DFA for a Regular Language

- In principle, since we can test for equivalence of DFA’s we can, given a DFA A find the DFA with the fewest states accepting L(A).
- Test all smaller DFA’s for equivalence with A.
- But that’s a terrible algorithm.

Efficient State Minimization

- Construct a table with all pairs of states.
- If you find a string that distinguishes two states (takes exactly one to an accepting state), mark that pair.
- Algorithm is a recursion on the length of the shortest distinguishing string.

State Minimization – (2)

- **Basis:** Mark a pair if exactly one is a final state.
- **Induction:** mark \([q, r]\) if there is some input symbol \(a\) such that \([\delta(q, a), \delta(r, a)]\) is marked.
- After no more marks are possible, the unmarked pairs are equivalent and can be merged into one state.

Transitivity of “Indistinguishable”

- If state \(p\) is indistinguishable from \(q\), and \(q\) is indistinguishable from \(r\), then \(p\) is indistinguishable from \(r\).
- **Proof:** The outcome (accept or don’t) of \(p\) and \(q\) on input \(w\) is the same, and the outcome of \(q\) and \(r\) on \(w\) is the same, then likewise the outcome of \(p\) and \(r\).

Constructing the Minimum-State DFA

- Suppose \(q_1, \ldots, q_n\) are indistinguishable states.
- Replace them by one state \(q\).
- Then \(\delta(q_1, a), \ldots, \delta(q_n, a)\) are all indistinguishable states.
- **Key point:** otherwise, we should have marked at least one more pair.
- Let \(\delta(q, a)\) = the representative state for that group.
Example: State Minimization

<table>
<thead>
<tr>
<th>r</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(1,3,5,7)</td>
</tr>
<tr>
<td>(2,4)</td>
<td>(5)</td>
</tr>
<tr>
<td>(2,4,6,8)</td>
<td>(1,3,5,7)</td>
</tr>
<tr>
<td>(2,4,6,8)</td>
<td>(1,3,7,9)</td>
</tr>
<tr>
<td>(1,3,5,7)</td>
<td>(2,4,6,8)</td>
</tr>
<tr>
<td>(1,3,7,9)</td>
<td>(2,4,6,8)</td>
</tr>
<tr>
<td>(1,3,5,7,9)</td>
<td>(2,4,6,8)</td>
</tr>
</tbody>
</table>

Remember this DFA? It was constructed for the chessboard NFA by the subset construction.

Example – Continued

- **Input r gives no help, because the pair $[B, D]$ is not marked.**

Example – Continued

- **Input b distinguishes $\{A, B, F\}$ from $\{C, D, E, G\}$. For example, $[A, C]$ gets marked because $[C, F]$ is marked.**

Example – Continued

- **[C, D] and [C, E] are marked because of transitions on b to marked pair $[F, G]$.**

Example – Continued

- **[A, B] is marked because of transitions on r to marked pair $[F, G]$.**

- **[D, E] can never be marked, because on both inputs they go to the same state.**
Example – Concluded

- Replace D and E by H.
 Result is the minimum-state DFA.

Eliminating Unreachable States

- Unfortunately, combining indistinguishable states could keep unreachable states in the "minimum-state" DFA.
- Thus, before or after, remove states that are not reachable from the start state.

Clincher

- We have combined states of the given DFA wherever possible.
- Could there be another, completely unrelated DFA with fewer states?
 - No. The proof involves minimizing the DFA we derived with the hypothetical better DFA.

Proof: No Unrelated, Smaller DFA

- Let A be our minimized DFA; let B be any equivalent DFA (accepting same language).
- Consider an automaton with the states of A and B combined.
- Use “distinguishable” in its contrapositive form:
 - If states q and p are indistinguishable, so are $\delta(q, a)$ and $\delta(p, a)$.

Inferring Indistinguishability

- Start states of A and B indistinguishable because $L(A) = L(B)$.

Inductive Hypothesis

- Every state q of A is indistinguishable from some state of B.
- Induction is on the length of the shortest string taking you from the start state of A to q.
 - $\text{IH}(n)$: if there is a string of length n taking start state of A to q, then q indistinguishable from some state of B.
Proof – (2)

◆ **IH(0):** Start states of A and B are indistinguishable, because \(L(A) = L(B) \).
◆ **Induction:** Show IH(n+1), let \(w = xa \) be arbitrary string of length \(n+1 \) and \(q = \delta_A(q_0, w) \).
◆ By the IH, \(x \) gets A to some state \(r \) that is indistinguishable from some state \(p \) of B.
◆ Then \(\delta_A(r, a) = q \) is indistinguishable from \(\delta_B(p, a) \).

Proof – (3)

◆ However, two states of A cannot be indistinguishable from the same state of B, or they would be indistinguishable from each other.
◆ Violates transitivity of “indistinguishable.”
◆ Thus, B has at least as many states as A.