Closure Properties of Regular Languages

Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism

Slides from Jeff Ullman

Closure Properties

Recall a closure property is a statement that a certain operation on languages, when applied to languages in a class (e.g., the regular languages), produces a result that is also in that class.

For regular languages, we can use any of its representations to prove a closure property.

Closure Under Union

If L and M are regular languages, so is \(L \cup M \).

Proof: Let L and M be the languages of regular expressions R and S, respectively.

Then \(R+S \) is a regular expression whose language is \(L \cup M \).

Closure Under Concatenation and Kleene Closure

Same idea:

- \(RS \) is a regular expression whose language is \(LM \).
- \(R^* \) is a regular expression whose language is \(L^* \).

Closure Under Intersection

If L and M are regular languages, then so is \(L \cap M \).

Proof: Let A and B be DFA's whose languages are L and M, respectively.

Construct C, the product automaton of A and B.

Make the final states of C be the pairs consisting of final states of both A and B.

Example: Product DFA for Intersection
Closure Under Difference

- If L and M are regular languages, then so is $L - M = \text{strings in } L \text{ but not } M$.
- **Proof:** Let A and B be DFA's whose languages are L and M, respectively.
- Construct C, the product automaton of A and B.
- Make the final states of C be the pairs where A-state is final but B-state is not.

Example: Product DFA for Difference

![Diagram of DFA product]

Notice: difference is the empty language

Closure Under Complementation

- The complement of a language L (with respect to an alphabet Σ such that Σ^* contains L) is $\Sigma^* - L$.
- Since Σ^* is surely regular, the complement of a regular language is always regular.

Closure Under Reversal

- Recall example of a DFA that accepted the binary strings that, as integers were divisible by 23.
- We said that the language of binary strings whose reversal was divisible by 23 was also regular, but the DFA construction was very tricky.
- Good application of reversal-closure.

Closure Under Reversal – (2)

- Given language L, L^R is the set of strings whose reversal is in L.
- **Example:** $L = \{0, 01, 100\}$; $L^R = \{0, 10, 001\}$.
- **Proof:** Let E be a regular expression for L.
- We show how to reverse E, to provide a regular expression E^R for L^R.

Reversal of a Regular Expression

- **Basis:** If E is a symbol a, ϵ, or \emptyset, then $E^R = E$.
- **Induction:** If E is
 - $F + G$, then $E^R = F^R + G^R$.
 - FG, then $E^R = G^RF^R$.
 - F^*, then $E^R = (F^R)^*$.
Example: Reversal of a RE

- Let $E = 01^* + 10^*$.
 - $E^R = (01^* + 10^*)^R = (01^*)^R + (10^*)^R$
 - $= (1^*)^R0 + (0^*)^R1^R$
 - $= (1^*)^R0 + (0^*)^R1$
 - $= 1^*0 + 0^*1$.

Homomorphisms

- A **homomorphism** on an alphabet is a function that gives a string for each symbol in that alphabet.
 - **Example**: $h(0) = ab$; $h(1) = \epsilon$.
 - Extend to strings by $h(a_1...a_n) = h(a_1)...h(a_n)$. **Note**: $h(\epsilon) = \epsilon$.
 - **Example**: $h(01010) = ababab$.

Closure Under Homomorphism

- If L is a regular language, and h is a homomorphism on its alphabet, then $h(L) = \{h(w) \mid w \text{ is in } L\}$ is also a regular language.
 - **Proof**: Let E be a regular expression for L.
 - Apply h to each symbol in E.
 - Language of resulting RE is $h(L)$.

Example: Closure under Homomorphism

- Let $h(0) = ab$; $h(1) = \epsilon$.
 - Let L be the language of regular expression $01^* + 10^*$.
 - Then $h(L)$ is the language of regular expression $ab\epsilon^* + \epsilon(ab)^*.$
 - **Note**: use parentheses to enforce the proper grouping.

Example – Continued

- $ab\epsilon^* + \epsilon(ab)^*$ can be simplified.
 - $\epsilon^* = \epsilon$, so $ab\epsilon^* = ab\epsilon$.
 - ϵ is the identity under concatenation.
 - That is, $\epsilon E = E \epsilon = E$ for any RE E.
 - Thus, $ab\epsilon^* + \epsilon(ab)^* = ab\epsilon + \epsilon(ab)^* = ab + (ab)^*$.
 - Finally, $L(ab)$ is contained in $L((ab)^*)$, so a RE for $h(L)$ is $(ab)^*$.

Inverse Homomorphisms

- Let h be a homomorphism and L a language whose alphabet is the output language of h.
 - $h^{-1}(L) = \{w \mid h(w) \text{ is in } L\}$.
Example: Inverse Homomorphism

- Let \(h(0) = ab \); \(h(1) = \varepsilon \).
- Let \(L = \{ab, baba\} \).
- \(h^{-1}(L) \) is the language with two 0's and any number of 1's = \(L(1^*01^*01^*) \).

Notice: no string maps to baba; any string with exactly two 0's maps to abab.

Proof – (2)

- The transitions for \(B \) are computed by applying \(h \) to an input symbol \(a \) and seeing where \(A \) would go on sequence of input symbols \(h(a) \).
- Formally, \(\delta_B(q, a) = \delta_A(q, h(a)) \).

Example: Inverse Homomorphism

Construction

- Start with a DFA \(A \) for \(L \) (mapped-to symbols).
- Construct a DFA \(B \) for \(h^{-1}(L) \) with:
 - The same set of states.
 - The same start state.
 - The same final states.
 - Input alphabet = the symbols to which homomorphism \(h \) applies (original input symbols)

Proof – (3)

- By induction on \(|w|\)
- \(IH(n) \): for all \(w \) of length \(n \),
 \(\delta_B(q_0, w) = \delta_A(q_0, h(w)) \).
- Basis: Show \(IH(0): \ w = \varepsilon \)
- \(\delta_B(q_0, \varepsilon) = q_0 \) and
 \(\delta_A(q_0, h(\varepsilon)) = \delta_A(q_0, \varepsilon) = q_0 \).

Inductive step: assume \(n \geq 0 \) and \(IH(n) \) to show \(IH(n+1) \).

- Let \(w = xa \) be any string of length \(n+1 \).
- \(\delta_B(q_0, w) = \delta_B(\delta_B(q_0, x), a) \).
 = \(\delta_B(\delta_A(q_0, h(x)), a) \) by \(IH(n) \).
 = \(\delta_A(\delta_A(q_0, h(x)), h(a)) \) by def. of DFA \(B \).
 = \(\delta_A(q_0, h(x)h(a)) \) by def. of extended \(\delta \).
 = \(\delta_A(q_0, h(w)) \) by def. of homomorphism.
Summary: Models for Regular Languages

- 4 "models": DFA, NFA, ε-NFA, RE
- Transition diagrams/transition tables
- Automatic conversions between them
 - Subset construction (with greedy version)
 - Removing ε-transitions
 - Building ε-NFA from RE
 - Building RE from DFA (splicing paths, elim. States)
- Algebra of Regular Expressions

Summary: Properties

- Pumping Lemma to show non-regularity
- Basic closure properties: Union, concatenation, Kleene-*, complement, reversal, intersection, difference
- Closure under homomorphism & inverse
- Tests for: membership, emptiness, infiniteness, equivalence, containment
- How to find a minimum state DFA

Blue uses cross product construction