Pushdown Automata

Definition
Moves of the PDA
Languages of the PDA

Pushdown Automata

- The PDA is an automaton equivalent to the CFG in language-defining power.
- Only the nondeterministic PDA defines all the CFL’s.
- But the deterministic version models parsers.
 - Most programming languages have deterministic PDA’s.

Intuition: PDA

- Think of an ε-NFA with the additional power that it can manipulate a stack.
- Its moves are determined by:
 1. The current state (of its “NFA”),
 2. The current input symbol (or ε), and
 3. The current symbol on top of its stack.

Intuition: PDA – (2)

- Being nondeterministic, the PDA can have a choice of next moves.
- In each choice, the PDA can:
 1. Change state, and also
 2. Replace the top symbol on the stack by a sequence of zero or more symbols.
 - Zero symbols = “pop.”
 - Many symbols = sequence of “pushes.”

PDA Formalism

- A PDA is described by:
 1. A finite set of states (Q, typically).
 2. An input alphabet (Σ, typically).
 3. A stack alphabet (Γ, typically).
 4. A transition function (δ, typically).
 5. A start state (q₀ in Q, typically).
 6. A start symbol (Z₀ in Γ, typically).
 7. A set of final states (F ⊆ Q, typically).

Conventions

- a, b, … are input symbols.
 - But sometimes we allow ε as a possible value.
- ..., X, Y, Z are stack symbols.
- ..., w, x, y, z are strings of input symbols.
- α, β,… are strings of stack symbols.
The Transition Function

- Takes three arguments:
 1. A state, in Q.
 2. An input, either a symbol in Σ or ε.
 3. A stack symbol in Γ.
- δ(q, a, Z) is a set of zero or more actions of the form (p, α).
 - p is a state; α is a string of stack symbols.

Actions of the PDA

- If δ(q, a, Z) contains (p, α) among its actions, then one thing the PDA can do in state q, with a at the front of the input, and Z on top of the stack is:
 1. Change the state to p.
 2. Remove a from the front of the input (but a may be ε).
 3. Replace Z on the top of the stack by α.

Example: PDA

- Design a PDA to accept \(\{0^n1^n \mid n \geq 1\} \).
- The states:
 - q = start state. We are in state q if we have seen only 0's so far.
 - p = we've seen at least one 1 and may now proceed only if the inputs are 1's.
 - f = final state; accept.

Example: PDA – (2)

- The stack symbols:
 - \(Z_0 \) = start symbol. Also marks the bottom of the stack, so we know when we have counted the same number of 1's as 0's.
 - X = marker, used to count the number of 0's seen on the input.

Example: PDA – (3)

- The transitions:
 - δ(q, 0, Z₀) = {(q, XZ₀)}.
 - δ(q, 0, X) = {(q, XX)}. These two rules cause one X to be pushed onto the stack for each 0 read from the input.
 - δ(q, 1, X) = {(p, ε)}. When we see a 1, go to state p and pop one X.
 - δ(p, 1, X) = {(p, ε)}. Pop one X per 1.
 - δ(p, ε, Z₀) = {(f, Z₀)}. Accept at bottom.
Actions of the Example PDA

\[q \]

\[X \]

\[Z_0 \]

0 0 1 1 1

Actions of the Example PDA

\[q \]

\[X \]

\[X \]

\[X \]

\[Z_0 \]

0 1 1 1

Actions of the Example PDA

\[q \]

\[X \]

\[X \]

\[Z_0 \]

1 1 1 1

Actions of the Example PDA

\[q \]

\[X \]

\[X \]

\[X \]

\[Z_0 \]

1 1 1

Actions of the Example PDA

\[p \]

\[X \]

\[X \]

\[Z_0 \]

1 1

Actions of the Example PDA

\[p \]

\[X \]

\[Z_0 \]

1

Actions of the Example PDA

\[p \]

\[Z_0 \]

0
Actions of the Example PDA

```
    f
  ___|
Z₀
```

Instantaneous Descriptions

- We can formalize the pictures just seen with an \textit{instantaneous description} (ID).
- A ID is a triple \((q, w, \alpha)\), where:
 1. \(q\) is the current state.
 2. \(w\) is the remaining input.
 3. \(\alpha\) is the stack contents, top at the left.

The “Goes-To” Relation

- To say that ID I can become ID J in one move of the PDA, we write \(I \vdash J\).
- Formally, \((q, aw, X\alpha) \vdash (p, w, \beta\alpha)\) for any \(w\) and \(\alpha\), if \(\delta(q, a, X)\) contains \((p, \beta)\).
- Extend \(\vdash\) to \(\vdash^*\), meaning “zero or more moves,” by:
 - Basis: \(I \vdash^* I\).
 - Induction: If \(I \vdash^* J\) and \(J \vdash K\), then \(I \vdash^* K\).

Example: Goes-To

- Using the previous example PDA, we can describe the sequence of moves by:
 - \((q, 000111, Z₀) \vdash (q, 00111, XZ₀)\)
 - \((q, 01111, XZ₀) \vdash (q, 111, XXXZ₀)\)
 - \((p, 111, XXXZ₀) \vdash (p, 1, XZ₀)\)
 - \((p, 1, Z₀) \vdash (f, \epsilon, Z₀)\)
- Thus, \((q, 000111, Z₀) \vdash^*(f, \epsilon, Z₀)\).
- What would happen on input 0001111?

Answer

- \((q, 0001111, Z₀) \vdash (q, 001111, XZ₀)\)
- \((q, 01111, XZ₀) \vdash (q, 111, XXXZ₀)\)
- \((p, 111, XXXZ₀) \vdash (p, 11, XZ₀)\)
- \((p, 11, XZ₀) \vdash (p, 1, Z₀)\)
- \((f, 1, Z₀) \vdash (f, \epsilon, Z₀)\)
- Note the last ID has no move.
- 0001111 is \textit{not} accepted, because the input is not completely consumed.

Aside: FA and PDA Notations

- We represented moves of a FA by an extended \(\delta\), which did not mention the input yet to be read.
- We could have chosen a similar notation for PDA’s, where the FA state is replaced by a state-stack combination, like the pictures just shown.
FA and PDA Notations – (2)
- Similarly, we could have chosen a FA notation with ID's.
 - Just drop the stack component.
- Why the difference? One theory:
 - FA tend to model things like protocols, with indefinitely long inputs.
 - PDA model parsers, which are given a fixed program to process.
- Also: bounded vs unbounded configs

Language of a PDA
- The common way to define the language of a PDA is by final state.
- If P is a PDA, then \(L(P) \) is the set of strings \(w \) such that \((q_0, w, Z_0) \vdash^* (f, \epsilon, \alpha)\) for final state \(f \) in \(F \) and any stack contents \(\alpha \).

Language of a PDA – (2)
- Another language defined by the same PDA is by empty stack.
- If P is a PDA, then \(N(P) \) is the set of strings \(w \) such that \((q_0, w, Z_0) \vdash^* (q, \epsilon, \epsilon)\) for any state \(q \) in \(Q \).

Equivalence of Language Definitions
1. If \(L = L(P) \), then there is another PDA \(P' \) such that \(L = N(P') \).
2. If \(L = N(P) \), then there is another PDA \(P'' \) such that \(L = L(P'') \).

Proof: \(L(P) \) to \(N(P') \) Intuition
- \(P' \) will simulate \(P \).
- If \(P \) accepts, \(P' \) will empty its stack.
- \(P' \) has to avoid accidentally emptying its stack, so it uses a special bottom-marker to catch the case where \(P \) empties its stack in a non-final state.

Proof: \(L(P) \) to \(N(P') \)
- \(P' \) has all the states, symbols, and moves of \(P \), plus:
 1. New starting stack symbol \(X_0 \), protects the stack from incidental emptying.
 2. New start state \(s \) and "erase" state \(e \).
 3. \(\delta(s, \epsilon, X_0) = \{(q_0, Z_0X_0)\} \). Get \(P \) started.
 4. \(\delta(f, \epsilon, X) = \delta(e, \epsilon, X) = \{(e, \epsilon)\} \) for any final state \(f \) of \(P \) and any stack symbol \(X \).
Proof: \(L(P) = N(P')\)

- Show if \(w\) in \(L(P)\) then \(w\) in \(N(P')\)

 \(w\) in \(L(P)\) so \((q_0, w, Z_0) \vdash^* (f, ε, α)\) in \(P\), so in \(P'\):

 \((s, w, X_0) \vdash (q_0, w, Z_0 X_0) \vdash^* (f, ε, α X_0) \vdash^* (e, ε, ε)\)

- Show if \(w\) in \(N(P')\) then \(w\) in \(L(P)\)

 If \(w\) in \(N(P')\) then \((s, w, X_0) \vdash^* (q, ε, ε)\) (for some \(q\)).

 State \(q\) must be \(e\) (only \(e\) pops \(X_0\), state \(e\) never left).

 First \((e, ε, β)\) ID is from \((f, ε, Xβ)\) where \(f\) in \(F\).

 So, \((s, w, X_0) \vdash^* (q, ε, ε)\) sequence is:

 \((s, w, X_0) \vdash (q_0, w, Z_0 X_0) \vdash^* (f, ε, Xβ) \vdash^* (e, ε, ε)\)

Proof: \(N(P)\) to \(L(P'')\) Intuition

- \(P''\) simulates \(P\).
- \(P''\) has a special bottom-marker to catch the situation where \(P\) empties its stack.
- If so, \(P''\) goes to its accepting state.

Construction: \(N(P)\) to \(L(P'')\)

- \(P''\) has all the states, symbols, and moves of \(P\), plus:

 1. New start stack symbol \(X_0\), used to guard the stack bottom.
 2. New start state \(s\) and new final state \(f\), \(F=\{f\}\).
 3. \(δ(s, ε, X_0) = \{(q_0, Z_0 X_0)\}\). Get \(P\) started.
 4. \(δ(q, ε, X_0) = \{(f, ε)\}\) for any state \(q\) of \(P\).

Deterministic PDA’s (skip?)

- To be deterministic, there must be at most one choice of move for any state \(q_i\), input symbol \(a\), and stack symbol \(X\).
- In addition, there must not be a choice between using input \(ε\) or real input.
- Formally, \(δ(q, a, X)\) and \(δ(q, ε, X)\) cannot both be nonempty.