Here we show how to convert an ϵ-NFA into a (normal) NFA. First, recall the definitions:

- An NFA is a tuple $(Q, \Sigma, \delta, q_0, F)$ where Q is a set of states, Σ is the alphabet, δ is the transition function that maps each state-symbol pair to a subset of Q, q_0 is the initial state, and $F \subset Q$ is the set of final (or accepting) states.

- We extend the transition function δ for an NFA to apply to strings as well as symbols:

 $\delta(q, \epsilon) = q$

 if $|w| \geq 1$ then $w = xa$ for some string x and symbol a, and

 $\delta(q, w) = \delta(q, xa) = \bigcup_{r \in \delta(q, x)} \delta(r, a)$

- A string w is accepted by an NFA if $\delta(q_0, w) \cap F \neq \emptyset$, i.e. $\delta(q_0, w)$ contains a state that is also in F.

- An ϵ-NFA is a tuple $(Q, \Sigma, \delta, q_0, F)$ where Q is a set of states, Σ is the alphabet, δ is the transition function that maps each pair consisting of a state and a symbol in $\Sigma \cup \{\epsilon\}$ to a subset of Q, q_0 is the initial state, and $F \subset Q$ is the set of final (or accepting) states.

- The ϵ-closure of a state q is $\text{eclose}(q)$ and contains all states reachable from q by following (zero or more) transitions labeled by ϵ. Thus q is always in $\text{eclose}(q)$.

- The ϵ-closure of a set of states $S \subseteq Q$ is defined by:

 $\text{eclose}(S) = \bigcup_{r \in S} \text{eclose}(r)$

- Fact 1: if S and T are subsets of states then $\text{eclose}(S \cup T) = \text{eclose}(S) \cup \text{eclose}(T)$.

- We extend the transition function δ for an ϵ-NFA to apply to strings in Σ^*. Note that (unlike for DFA’s and normal NFA’s) the extension for ϵ-NFAs can be different from δ on single symbols (including ϵ), so we must use a different symbol for it, we use $\hat{\delta}$.

 $\hat{\delta}(q, \epsilon) = \text{eclose}(q)$

 if $|w| \geq 1$ then $w = xa$ for some string x and symbol a, and

 $\hat{\delta}(q, w) = \hat{\delta}(q, xa) = \text{eclose}\left(\bigcup_{r \in \hat{\delta}(q, x)} \delta(r, a)\right)$
• A string w is accepted by an ϵ-NFA if $\hat{\delta}(q_0, w) \cap F \neq \emptyset$.

Our goal is to show the following theorem:

Theorem 1. The set of languages accepted by NFAs is the same as the set of languages accepted by ϵ-NFAs.

The proof is in two parts. First we show the easy part that every language accepted by a NFA is also accepted by an ϵ-NFA. This is because every NFA is an ϵ-NFA with no ϵ-transitions.

Claim 1. If $N = (Q, \Sigma, q_0, F)$ is an NFA, then $E = (Q, \Sigma, \delta_E, q_0, F)$ where $\delta_E(q, a) = \delta(q, a)$ for all $a \in \Sigma$ and $\delta_E(q, \epsilon) = \emptyset$ for all $q \in Q$ is an ϵ-NFA accepting the same language.

Proof. Since E contains no ϵ-transitions, $\text{eclose}(S) = S$ for any set of states $S \subseteq Q$. Therefore, δ_E is defined by:

- $\hat{\delta}_E(q, \epsilon) = \text{eclose}(q) = q$
- if $|w| \geq 1$ then $w = xa$ for some string x and symbol a, and

$\hat{\delta}_E(q, w) = \hat{\delta}_E(q, xa) = \text{eclose} \left(\bigcup_{r \in \delta(q, x)} \delta_E(r, a) \right) = \bigcup_{r \in \delta_E(q, x)} \delta_E(r, a) = \bigcup_{r \in \delta_E(q, x)} \delta(r, a)$

and $\hat{\delta}_E$ matches the definition of the extended δ in the NFA N, so they are the same. Therefore, for any word $w \in \Sigma^*$, $\hat{\delta}_E(q_0, w) \cap F \neq \emptyset$ for exactly those w where $\delta(q_0, w) \cap F \neq \emptyset$, and both N and E accept the same language. \qed

Claim 2. Given any ϵ-NFA $E = (Q, \Sigma, \delta_E, q_0, F)$ one can construct an NFA $N = (Q, \Sigma, \delta_N, q_0, F_N)$ accepting the same language. The construction sets

$\delta_N(q, a) = \bigcup_{r \in \text{eclose}(q)} \delta_E(r, a)$

and F_N to the set of states q such that $\text{eclose}(q) \cap F \neq \emptyset$.

Note that N and E share state sets, starting states, and alphabets. Also, all closure operations are with respect to E and δ_E (recall that NFA N has no ϵ-transitions).

Proof. First notice that N accepts a string w if (and only if) $\delta_N(q_0, w)$ contains a state in F_N. By the definition of F_N, this is equivalent to $\text{eclose}(\delta_N(q_0, w))$ contains a state in F. Also, E accepts a string w if (and only if) $\delta_E(q_0, w)$ contains a state in F. Therefore if $\text{eclose}(\delta_N(q_0, w)) = \hat{\delta}_E(q_0, w)$ for all $s \in \Sigma^*$ then E and N accept the same language.

We now prove that for any string w that $\text{eclose}(\delta_N(q_0, w)) = \hat{\delta}_E(q_0, w)$ by induction on $|w|$.

For each $n \geq 0$, define IH(n) as: $\text{eclose}(\delta_N(q_0, w)) = \hat{\delta}_E(q_0, w)$ for all $w \in \Sigma^n$.

2
Base Case: show IH(0).
There is only one string in Σ^0, the empty string ϵ.

\[
\text{ECLOSE} (\delta_N(q_0, \epsilon)) = \text{ECLOSE} (q_0) \quad \text{since } \delta_N(q, \epsilon) = q \\
= \hat{\delta}_E(q_0, \epsilon) \quad \text{def. } \hat{\delta}_E(q, \epsilon)
\]

Inductive Step: Assume $n \geq 0$ and IH(n) to show IH($n+1$). Let w be an arbitrary string in Σ^{n+1}. Then w can be written as xa for some string $x \in \Sigma^n$ and symbol a. We now examine ECLOSE($\delta_N(q_0, w)$).

\[
\begin{align*}
\text{ECLOSE} (\delta_N(q_0, w)) & = \text{ECLOSE} (\delta_N(q_0, xa)) \quad \text{since } w = xa \\
& = \text{ECLOSE} \left(\bigcup_{r \in \text{ECLOSE} (\delta_N(q_0, x))} \delta_E(r, a) \right) \quad \text{def. } \delta_N \\
& = \text{ECLOSE} \left(\bigcup_{r \in \delta_E(q_0, x)} \delta_E(r, a) \right) \quad \text{using IH(n) on } x \\
& = \bigcup_{r \in \delta_E(q_0, x)} \text{ECLOSE} (\delta_E(r, a)) \quad \text{Fact 1} \\
& = \hat{\delta}_E(q_0, xa) \quad \text{def. } \hat{\delta}_E \\
& = \hat{\delta}_E(q_0, w) \quad \text{since } w = xa
\end{align*}
\]

Thus $\text{ECLOSE} (\delta_N(q_0, w)) = \hat{\delta}_E(q_0, w)$, showing IH($n + 1$) and finishing the proof.

The proof of Theorem 1 follows immediately from Claim 1 and Claim 2.