1. Problem 4.10, from the book.
4. Problem 4.20, from the book.
5. Problem 4.24, from the book.
7. Problem 4.28, from the book.

11. An RSA (Rivest-Shamir-Adelman) cryptosystem is composed of $e, d, n = pq$ and where $d \times e \equiv 1 \mod \varphi(n)$. Construct a simple RSA cipher using these parameters: $p = 3, q = 5, e = 11$, and $d = 3$. The public key is e, the private key is d, n is also public but p, q and $\varphi(n)$ are private.

 (a) $n = \underline{\hspace{2cm}}$ and $\varphi(n) = \underline{\hspace{2cm}}$.

 (b) If the adversary knows $\varphi(n)$ then it is trivial to compute $\underline{\hspace{2cm}}$.

 (c) The formula for $E(m) = \underline{\hspace{2cm}}$ and for $D(c) = \underline{\hspace{2cm}}$.

 (d) Why is it safe for n to be made public?

12. A Diffie-Helman key exchange requires a base a, and a prime p. A must choose an x and B must choose a y. It then proceeds as follows:

 $A \rightarrow B : \ a, p, a^x(\text{mod } p)$
 $B \rightarrow A : \ a^y(\text{mod } p)$

 (a) What secret do A and B now share?

 (b) Why doesn’t the adversary also know this secret?

 (c) What would be necessary for the adversary to learn this secret?