4.1 Interval Scheduling
Interval scheduling.

- Job j starts at s_j and finishes at f_j.
- Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.

![Interval Scheduling Diagram](image-url)
Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

- [Earliest start time] Consider jobs in ascending order of start time s_j.
- [Earliest finish time] Consider jobs in ascending order of finish time f_j.
- [Shortest interval] Consider jobs in ascending order of interval length $f_j - s_j$.
- [Fewest conflicts] For each job, count the number of conflicting jobs c_j. Schedule in ascending order of conflicts c_j.
Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

- Breaks earliest start time
- Breaks shortest interval
- Breaks fewest conflicts
Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.

```
Sort jobs by finish times so that \( f_1 \leq f_2 \leq \ldots \leq f_n \).

// jobs selected
A ← φ
for j = 1 to n {
    if (job j compatible with A)
        A ← A ∪ {j}
}
return A
```

Implementation. \(O(n \log n) \).

- Remember job \(j^* \) that was added last to \(A \).
- Job \(j \) is compatible with \(A \) if \(s_j \geq f_j^* \).
Theorem. Greedy algorithm is optimal.

Proof. (by contradiction)

Assume greedy is not optimal, and let's see what happens.

Let i_1, i_2, \ldots, i_k denote set of jobs selected by greedy.

Let j_1, j_2, \ldots, j_m denote set of jobs in the optimal solution with $i_1 = j_1$, $i_2 = j_2$, ..., $i_r = j_r$ for the largest possible value of r.

why not replace job j_{r+1} with job i_{r+1}?
Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

- Assume greedy is not optimal, and let's see what happens.
- Let i_1, i_2, \ldots, i_k denote set of jobs selected by greedy.
- Let j_1, j_2, \ldots, j_m denote set of jobs in the optimal solution with $i_1 = j_1, i_2 = j_2, \ldots, i_r = j_r$ for the largest possible value of r.

Greedy: i_1, i_1, i_r, i_{r+1}

OPT: j_1, j_2, j_r, i_{r+1}

Job i_{r+1} finishes before j_{r+1}

Solution still feasible and optimal, but contradicts maximality of r.
4.1 Interval Partitioning
Interval Partitioning

Interval partitioning.

- Lecture j starts at s_j and finishes at f_j.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.
Interval Partitioning

Interval partitioning.

- Lecture j starts at s_j and finishes at f_j.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses only 3.
Interval Partitioning: Lower Bound on Optimal Solution

Def. The **depth** of a set of open intervals is the maximum number that contain any given time.

Key observation. Number of classrooms needed $\geq \text{depth}$.

Ex: Depth of schedule below = 3 \Rightarrow schedule below is optimal.

a, b, c all contain 9:30

Q. Does there always exist a schedule equal to depth of intervals?
Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

Sort intervals by starting time so that \(s_1 \leq s_2 \leq \ldots \leq s_n \).

d \leftarrow 0 \quad \text{--- number of allocated classrooms}

for \(j = 1 \) to \(n \) {
 if (lecture \(j \) is compatible with some classroom \(k \))
 schedule lecture \(j \) in classroom \(k \)
 else
 allocate a new classroom \(d + 1 \)
 schedule lecture \(j \) in classroom \(d + 1 \)
 \(d \leftarrow d + 1 \)
}

Implementation. \(O(n \log n) \).

- For each classroom \(k \), maintain the finish time of the last job added.
- Keep the classrooms in a priority queue.
Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom.

Theorem. Greedy algorithm is optimal.

Pf.

- Let $d =$ number of classrooms that the greedy algorithm allocates.
- Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all $d-1$ other classrooms.
- Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s_j.
- Thus, we have d lectures overlapping at time $s_j + \varepsilon$.
- Key observation \Rightarrow all schedules use $\geq d$ classrooms. \blacksquare