1.2 Five Representative Problems
Interval Scheduling

Input. Set of jobs with start times and finish times.

Goal. Find maximum cardinality subset of mutually compatible jobs.

![Diagram showing intervals](image)
Weighted Interval Scheduling

Input. Set of jobs with start times, finish times, and weights.

Goal. Find **maximum weight** subset of mutually compatible jobs.
Bipartite Matching

Input. Bipartite graph.

Goal. Find *maximum cardinality* matching.
Independent Set

Input. Graph.

Goal. Find **maximum cardinality** independent set.

A subset of nodes such that no two joined by an edge.
Competitive Facility Location

Input. Graph with weight on each each node.

Game. Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a *maximum weight* subset of nodes.

Second player can guarantee 20, but not 25.
Worst-Case Polynomial-Time

Def. An algorithm is **efficient** if its running time is polynomial.

Justification: It really works in practice!
- Although $6.02 \times 10^{23} \times N^{20}$ is technically poly-time, it would be useless in practice.
- In practice, the poly-time algorithms that people develop almost always have low constants and low exponents.
- Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.

Exceptions.
- Some poly-time algorithms do have high constants and/or exponents, and are useless in practice.
- Some exponential-time (or worse) algorithms are widely used because the worst-case instances seem to be rare.

simplex method
Unix grep
Chapter 5
Divide and Conquer
Divide-and-Conquer

Divide-and-conquer.
- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.
- Break up problem of size n into two equal parts of size \(\frac{1}{2}n \).
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.
- Brute force: \(n^2 \).
- Divide-and-conquer: \(n \log n \).

Divide et impera.
Veni, vidi, vici.
- Julius Caesar
5.1 Mergesort
Sorting

Sorting. Given n elements, rearrange in ascending order.

Obvious sorting applications.
- List files in a directory.
- Organize an MP3 library.
- List names in phone book.
- Display Google PageRank results.

Easier once sorted.
- Find the median.
- Find the closest pair.
- Binary search in a database.
- Identify statistical outliers.

Non-obvious sorting applications.
- Data compression.
- Computer graphics.
- Interval scheduling.
- Computational biology.
- Minimum spanning tree.
- Supply chain management.
- Simulate a system of particles.
- Book recommendations on Amazon.
- Load balancing on a parallel computer.

...
Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

\[
\begin{array}{llllllllllll}
A & L & G & O & R & I & T & H & M & S \\
A & L & G & O & R & I & T & H & M & S \\
A & G & L & O & R & H & I & M & S & T \\
A & G & H & I & L & M & O & R & S & T
\end{array}
\]

divide\quad O(1)

sort\quad 2T(n/2)

merge\quad O(n)

Jon von Neumann (1945)
Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
- Linear number of comparisons.
- Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

using only a constant amount of extra storage
5.3 Counting Inversions
Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: $a_1, a_2, ..., a_n$.
- Songs i and j inverted if $i < j$, but $a_i > a_j$.

Songs

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>You</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Inversions

3-2, 4-2

Brute force: check all $\Theta(n^2)$ pairs i and j.
Applications

Applications.

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
- **Divide**: separate list into two pieces.

```
1  5  4  8  10  2  6  9  12  11  3  7
```

Divide: \(O(1)\).
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- **Divide:** separate list into two pieces.
- **Conquer:** recursively count inversions in each half.

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>4</th>
<th>8</th>
<th>10</th>
<th>2</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>11</th>
<th>3</th>
<th>7</th>
</tr>
</thead>
</table>

5 blue-blue inversions

5-4, 5-2, 4-2, 8-2, 10-2

8 green-green inversions

6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

Divide: O(1).

Conquer: 2T(n / 2)
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
- **Divide**: separate list into two pieces.
- **Conquer**: recursively count inversions in each half.
- **Combine**: count inversions where \(a_i \) and \(a_j \) are in different halves, and return sum of three quantities.

\[
\begin{array}{cccccccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

Divide: \(O(1) \).

\[
\begin{array}{cccccccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

5 blue-blue inversions

8 green-green inversions

9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Conquer: \(2T(n / 2) \)

Combine: ???

\[
\begin{array}{cccccccccccc}
\end{array}
\]

Total = 5 + 8 + 9 = 22.
Counting Inversions: Combine

Combine: count blue-green inversions
 - Assume each half is sorted.
 - Count inversions where \(a_i\) and \(a_j\) are in different halves.
 - Merge two sorted halves into sorted whole.

\[
\begin{array}{cccccccc}
3 & 7 & 10 & 14 & 18 & 19 \\
\hline
2 & 11 & 16 & 17 & 23 & 25 \\
\end{array}
\]

13 blue-green inversions: \(6 + 3 + 2 + 2 + 0 + 0\)

Count: \(O(n)\)

\[
\begin{array}{cccccccc}
2 & 3 & 7 & 10 & 11 & 14 & 16 & 17 & 18 & 19 & 23 & 25 \\
\end{array}
\]

Merge: \(O(n)\)

\[
T(n) \leq T\left(\left\lfloor n/2 \right\rfloor \right) + T\left(\left\lceil n/2 \right\rceil \right) + O(n) \implies T(n) = O(n \log n)
\]
Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

```
Sort-and-Count(L) {
    if list L has one element
        return 0 and the list L

    Divide the list into two halves A and B
    (r_A, A) ← Sort-and-Count(A)
    (r_B, B) ← Sort-and-Count(B)
    (r, L) ← Merge-and-Count(A, B)

    return r = r_A + r_B + r and the sorted list L
}
```