Figure 9.1 Analysis of the algorithm SELECT. The \(n \) elements are represented by small circles, and each group of 5 elements occupies a column. The medians of the groups are whitened, and the median-of-medians \(x \) is labeled. (When finding the median of an even number of elements, we use the lower median.) Arrows go from larger elements to smaller, from which we can see that 3 out of every full group of 5 elements to the right of \(x \) are greater than \(x \), and 3 out of every group of 5 elements to the left of \(x \) are less than \(x \). The elements known to be greater than \(x \) appear on a shaded background.

step 2 are greater than or equal to the median-of-medians \(x \). Thus, at least half of the \(\lceil n/5 \rceil \) groups contribute at least 3 elements that are greater than \(x \), except for the one group that has fewer than 5 elements if 5 does not divide \(n \) exactly, and the one group containing \(x \) itself. Discounting these two groups, it follows that the number of elements greater than \(x \) is at least

\[
3 \left(\left\lceil \frac{1}{2} \left\lceil \frac{n}{5} \right\rceil \right\rceil - 2 \right) \geq \frac{3n}{10} - 6.
\]

Similarly, at least \(3n/10 - 6 \) elements are less than \(x \). Thus, in the worst case, step 5 calls SELECT recursively on at most \(7n/10 + 6 \) elements.

We can now develop a recurrence for the worst-case running time \(T(n) \) of the algorithm SELECT. Steps 1, 2, and 4 take \(O(n) \) time. (Step 2 consists of \(O(n) \) calls of insertion sort on sets of size \(O(1) \).) Step 3 takes time \(T(\lceil n/5 \rceil) \), and step 5 takes time at most \(T(7n/10 + 6) \), assuming that \(T \) is monotonically increasing. We make the assumption, which seems unmotivated at first, that any input of fewer than 140 elements requires \(O(1) \) time; the origin of the magic constant 140 will be clear shortly. We can therefore obtain the recurrence

1Because of our assumption that the numbers are distinct, all medians except \(x \) are either greater than or less than \(x \).