1. In class before the midterm we discussed building heaps from \(n \) elements using a divide and conquer approach. The basic operation is “check that a root has more priority than its children and swap if necessary.” We had used the function \(T(n) \) defined by \(T(1) = 0 \), \(T(2) = T(3) = 1 \) and for \(n > 1 \), \(T(n) = 2T(\lfloor n/2 \rfloor) + \lg n \) as an upper bound on the number of these basic operations needed to build an \(n \) element heap. However, this analysis assumed that every parent’s two subtrees are equal size (or equivalently, that the heap was a complete binary tree - pg. 1090 of the text).

First, if a heap contains \(n \) nodes, what is the largest fraction of \(n \) that can appear in a single subtree? Justify your answer.

Next, consider the following way of building a heap of \(n \) elements. If \(n = 2^k - 1 \), then the heap is complete binary tree and we can use the divide and conquer process discussed in class. On the other hand, if \(2^{k-1} - 1 < n < 2^k - 1 \) then we can add \(2^k - 1 - n \) “dummy” items with lower priority than any possible “real” items, creating a new \(2^k - 1 \) element build-heap problem. This technique of adding dummy elements to get a convenient input size is called “padding”. Show that building a heap with padding requires at most \(2n \) basic three-way comparison operations (where \(n \) is the number of original, unpadded elements). (Hint: analyze \(G(k) \), the time it takes to heapify \(2^k - 1 \) elements, and show that \(G(k) \) is at most something like \(2^k - ak - b \) for some values of \(a \) and \(b \)).

2. Assume that you have an array of \(n \) objects, and want to determine which of the objects (if any) is a “majority element”, occurring at least \(\lceil n/2 \rceil + 1 \) times in array. These objects are not ordered, so “<” or “>” comparisons are not possible, but you can test two objects for equality. Discover and analyze a divide and conquer algorithm for this problem that uses \(O(n \lg n) \) equality tests on the objects.

(Hard!) For extra credit (on an optional assignment??), find a divide and conquer algorithm using only \(O(n) \) equality tests. For the extra credit part, you can assume that \(n \) is a convenient size (i.e. \(c^k \) for some small integer \(c \)). The algorithm I have in mind does not strictly fit the “divide and conquer” template, as the outermost recursion does some extra work that is not done at every level.