1. Design an algorithm called Extrema(A, p, r) on the divide and conquer paradigm which finds and returns the maximum and minimum values in $A[p \cdots r]$. Your algorithm should perform exactly $\lceil 3n/2 \rceil - 2$ comparisons, on an input array of length n.

 a. Prove the correctness of your algorithm.

 b. Write a recurrence for the number of comparisons performed on arrays of length n, and solve it exactly.

2. Design a variation of MergeSort which, instead of recurring until the subarray has length 0 or 1, recurs at most a constant k times, then calls InsertionSort on the resulting 2^k subarrays of length (approximately) $n/2^k$. Call this algorithm Depth-k-MergeSort.

 For example let $q = \left\lfloor \frac{1+n}{2} \right\rfloor$, $u = \left\lfloor \frac{1+q}{2} \right\rfloor$, and $v = \left\lfloor \frac{(q+1)+n}{2} \right\rfloor$. We can picture the operation of Depth-2-MergeSort by the following recursion tree.

 The nodes at depth i represent subarrays of length $n/2^i$. Depth-2-MergeSort calls InsertionSort on the 4 subarrays at Depth 2. Depth-1-MergeSort recurs down to depth 1 and calls InsertionSort on the 2 subarrays at Depth 1. Depth-0-MergeSort simply calls InsertionSort on the full array.

 a. Write pseudo-code for this algorithm. (Hint: Notice that each call to Depth-k-MergeSort must know its own level in the recursion tree in order to know whether it should recur again, or call InsertionSort.)

 b. Determine the asymptotic run time of Depth-k-MergeSort as a function of both k and n. In order to simplify the analysis, you may assume that n is always an exact power of 2. (Hint: First review the discussion of InsertionSort in the text, and note that it runs in time $\Theta(n^2)$.)
3. Recall the RandSelect(A, p, r, i) algorithm which returns the ith order statistic of the subarray $A[p \cdots r]$. The recurrence

$$t(n) = (n-1) + \left(\frac{n-1}{n^2} \right) \sum_{q=1}^{n-1} t(q)$$

was derived in class for the average number of comparisons performed by RandSelect on subarrays of length $n = r - p + 1$. Use this recurrence to prove that $t(n) = \Theta(n)$. (Hint: first show directly that $t(n) \geq \Omega(n)$. Then prove by induction that $\forall n \geq 1: t(n) \leq 2n$, showing $t(n) = O(n)$.)