As usual this statement does not assert that the problem can be solved with only \(n \) comparisons, only that \(n \) are necessary.

In fact, the best known algorithm does \(n - 1 \) comparisons, much worse than \(n \).

\[
\text{FindMax(A)}
\]

1. \(n \leftarrow \text{length}(A) \)
2. \(\text{max} \leftarrow A[1], \text{imax} \leftarrow 1 \)
3. \(\text{for} \ i \leftarrow 2 \ \text{to} \ n \)
4. \(\text{if} \ A[i] > \text{max} \)
5. \(\text{max} \leftarrow A[i] \)
6. \(\text{imax} \leftarrow i \)
7. \(\text{return} (\text{max}, \text{imax}) \)

\[
\text{Ex} \quad n = 4
\]

\[
\text{Decision Tree}: \quad \# \text{Comp} = \log_2 4 = 2
\]

\[
\text{Best known :} \quad \# \text{Comp} = 3
\]

Exercise

Draw a decision tree for the operation of \(\text{FindMax} \) in this case. Observe that its height is 3 not 2.
Ex \(n = 100 \)

Deci\sion Tree: \# Comp = \(\log_2 100 \) = 10
Best Known: \# Comp = 1000

We must either find a better algorithm (not possible) or obtain a tighter lower bound.

Adversary Argument:

Consider any comparison based algorithm for this problem and let it run on an array \(A[1..n] \), as yet unspecified.

Daemon's strategy:
Answer each question concerning a comparison as if \(A[i] = i \) (1 ≤ i ≤ n), i.e., as if \(A = (1, 2, \ldots, n) \). In other words, when the algorithm asks "Is \(A[i] < A[j] \)?",

the daemon answers

\[
\begin{cases} \text{true} & \text{if } i < j \quad ("i \text{ has lost a comparison}") \\ \text{false} & \text{if } j < i \quad ("j \text{ has lost a comparison}") \end{cases}
\]

When this happens we say that the smaller of \(i \) and \(j \) has "lost a comparison".
Now assume that the algorithm does fewer than \(M = n - 1 \) comparisons before it halts and outputs the index \(k \) (on the pair \((A[k], k)\)), i.e., the algorithm claims that \(A[k] \) is maximum in array \(A \).

Let \(j \) be an integer satisfying

- \(1 \leq j \leq n \)
- \(j \neq k \)
- \(j \) has not lost any comparisons.

Such an integer must exist since, by assumption, at most \(n - 2 \) comparisons have been performed, and each new comparison creates at most one new loser, hence there are at most \(n - 2 \) losers.

At this point, the algorithm can say the algorithm is wrong by claiming that array \(A \) is given by

\[
A[i] = \begin{cases}
 i & i \neq j \\
 n+1 & i = j
\end{cases}
\]

indeed \(A[k] = k \) is not maximum in
This array, yet the demons answers are all consistent with it.

Therefor no correct algorithm can solve this problem with fewer than \(m=n-1 \) comparisons, and our best known algorithm cannot be improved upon.

Graph Connectivity

Let \(G=(V,E) \) be an (undirected) graph on \(|V|=n \geq 2 \) vertices.

Problem: Determine whether or not \(G \) is connected.

We consider only algorithms which are allowed to ask questions of the form "is vertex \(u \) adjacent to vertex \(v \)?"

The decision tree lower bound is trivial:

\[
\text{#outcomes per question} = 2 \quad (\text{yes/no})
\]

\[
\text{#verdicts} = 2 \quad (\text{connected/disconnected})
\]

\[
h \geq \lceil \log_2 2 \rceil = 1
\]

\[
\text{At least 1 question is necessary.}
\]
Depth first search (DFS) solves this problem in time $\Omega(n^2)$. (See section 22.3 for a description.)

Adversary lower bound:

Consider any "adjacency" based algorithm for this problem and start it on an (unspecified) graph $G = (V, E)$ with $n = |V|$.

Daemon's strategy:

Partition V into two subsets X and Y of sizes $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively, i.e.

$$X \cup Y = V, \quad X \cap Y = \emptyset, \quad |X| = \lfloor n/2 \rfloor, \quad |Y| = \lceil n/2 \rceil.$$

Whenever the algorithm asks "is u adjacent to v?" the daemon answers `yes` if u and v belong to the same subset, i.e.

- `yes` if $u, v \in X$ or $u, v \in Y$.
- `no` if $u \in X, v \in Y$ or $u \in Y, v \in X$.

In other words, the daemon answers as if G consists of the disjoint union of two complete graphs on X and Y respectively.
(A graph is called **complete** if each pair of distinct vertices are joined by exactly one edge.)

Now suppose the algorithm halts and returns an answer (connected or disconnected) after asking fewer than \(M = \lceil \sqrt{\frac{1}{2}} \rceil \) questions. There must then exist a pair \(x \in X \) and \(y \in Y \) about which the algorithm has not inquired.

If the algorithm says \(G \) is connected, the

Diagram

[Diagram not shown, but implied as a pair of complete graphs not connected to each other]

This graph is disconnected and is clearly consistent with the diagnostic sequence of answers.
On the other hand, if the algorithm says G is disconnected, the daemon can claim that G actually consists of two complete graphs on X and Y, with a single edge \(e = xy \) added.

\[
\begin{array}{c}
\text{complete} \quad \text{complete} \\
\circ x \quad \circ \circ y \\
X \quad Y
\end{array}
\]

This graph is connected and is consistent with all the daemon's answers, since the edge \(e = xy \) was not probed by the algorithm.

In either case, the daemon can claim the algorithm is wrong. Thus any algorithm which does not ask at least \(\lceil \sqrt{n/2} \rceil^2 \geq \sqrt{2n^2} \) questions (in worst case) cannot be correct.

Thus DFS cannot be improved upon, except perhaps for improvements in hidden constants.
Note: A complete graph on \(n \) vertices has \(\binom{n}{2} = \frac{n(n-1)}{2} \) edges, since each edge corresponds to a unique 2-element subset of \(V(G) \).

Exercise:

Give a more sophisticated adversary argument showing that any "adjacency based" algorithm to determine connectivity must ask at least \(\binom{n}{2} \) questions (in worst case.) **Note:** \(\binom{n}{2} = \left\lfloor \frac{n^2}{2} \right\rfloor \leq \frac{n^2}{2} \leq \frac{n^2}{2} \).

In other words, a correct algorithm must inquire about each of the \(\binom{n}{2} \) potential edges.

Exercise

Use an adversary argument to show that \(\binom{n}{2} \) "adjacency" questions are necessary (in worst case) to determine if a graph \(G \) is acyclic.

Exercise

Give an adversary argument showing that a comparison sort must do at least \(\lceil n \ln n \rceil \) comparisons in worst case on input of size \(n \).
(Note: This is essentially no different from the adversary lower bound for 20 questions since sorting n elements is really a search of n! permutations. The adversary must answer in a way which keeps the pool of candidate permutations as large as possible.)

Problem

Let \(b = b_1, b_2, b_3, b_4, b_5 \) be a bit string of length 5. Determine whether or not \(b \) contains the substring \(111 \) (i.e., 3 consecutive 1's).

Consider algorithms whose only allowed operation is to peek at a bit.

Obviously 5 peeks are sufficient. A decision tree argument provides the (useless) fact that at least 1 peak is necessary.

Exercise:

a) Use an adversary argument to show that 4 peeks are necessary in general.

b) Design an algorithm which solves the problem in only 4 peeks.