OTHER SORTING ALGORITHMS (8.1-8.4)

The sorting algorithms we've studied so far use no information other than the (total) order relation on $A_1, ... , A_n$.

I.e., they have the ability to compare two array elements $A_i < A_j$, and obtain true or false. No other information about the relationship between array elements was used.

Such an algorithm is called a Comparison Sort.

Non-Comparison Sorts are those which have extra information at their disposal.

THEOREM.

Any Comparison Sort performs $O(n \log n)$ comparisons on input of length n, in worst case.

Proof: Later.
Comparison Sorts:
- Bubble Sort
- Insertion Sort
- Heap Sort
- Merge Sort
- Quicksort

Non-Comparison Sorts:
- Counting Sort
- Radix Sort
- Bucket Sort

Counting Sort

This algorithm assumes that the elements of A are integers in the range 0 to K for some K ∈ Z^+

0 ≤ A[1...n] ≤ K

The idea is to determine for each element A[i] the number of elements less than or equal to A[i], which determines the proper location for A[i].

The algorithm also deals with the situation in which several elements have the same value.
COUNTING SORT USES REVERSAL ARRAYS.

- A[1...n] input array
- B[1...n] output array
- C[0...k] temporary storage (local)

CountingSort(A, B, k) (Pre: 0 ≤ A[1...n] ≤ k, integers, n = len[A])

1. for i ← 0 to k
2. C[i] ← 0
3. for i ← 1 to n
4. C[A[i]] ← C[A[i]] + 1
5. for i ← 2 to k
6. C[i] ← C[i] + C[i−1]
7. for i ← n to 1

- Loop 1-2 initializes C to all 0's.
- Loop 3-4 sets C[i] to the number of elements in A which are equal to i.
- Loop 5-6 sets C[i] to the number of elements in A which are less than or equal to i.
- Loop 7-9 places elements of A into correct output positions.
Observe that if a contains distinct entries, then \(C[|A[i]|] \), being the number of elements less than or equal to \(A[i] \), is the correct index position for \(A[i] \). Line 8 places it there. If a contains repeated elements, then line 9 ensures that any elements equal to \(A[i] \) which are left of \(A[i] \) in the original array, will be placed to the left of \(A[i] \) in the output array.

Note that CountingSort is **stable** in the sense that elements of the same value occur in the output array in the same order they occur in the input array. (This is only relevant when elements contain Satellite Data.)

Let \(T(n) \) be the number of assignment operations (\(= \)) performed by CountingSort. Then

\[
T(n) = n + (k-1) + 2n = 3n + 2k - 1
\]

\[
\therefore T(n) = \Theta(n + k)
\]
If \(k = O(n) \), as is often the case in practice, then \(T(n) = \Theta(n) \).

How did we beat the lower bound \(\Omega(n \log n) \)? Counting Sort is not a comparison sort, in fact no comparisons are performed. Instead the fact that a consists of integers only is exploited.

Radix Sort

This algorithm assumes that each element of \(A[1..n] \) is a \(d \)-digit number.

\[
A[i] = x_d x_{d-1} \ldots x_2 x_1
\]

\[\uparrow \quad \uparrow\]

most significant least significant

Note: Although it is often the case, we need not assume that each digit is in the same range (e.g. 0-9).

E.g.

\[
A[i] = \text{year}/\text{month}/\text{day}
\]

or

\[
\]
Thus RadixSort is in some sense Alphabetized the elements of A. We may think of these elements as data records, with the "digit" being fields.

RadixSort(A,d) (Pre: A consists of d-digit numbers)

1.) for i = 1 to d
2.) Sort A on digit i using a stable sort.

Note: it is necessary that we sort from least to most significant digit.

Ex. d = 4

\[
\begin{array}{c}
9117 \\
8213 \\
2214 \\
2433 \\
8213 \\
2214 \\
9117 \\
2433 \\
9117 \\
2214 \\
2433 \\
8213 \\
9117
\end{array}
\]

Exercise
Prove the correctness of RadixSort by (finite) induction on i, the column being sorted.
Induction Hypothesis: The left truncated numbers

\[x_l \ldots x_{i+1}, x_i \ldots x_1 \]

(i.e. Digit 1 to i) are sorted after the i'th iteration of loop 1-2.

Note the stability of the sort in (2) is necessary for the induction step to work.

If each digit is in the range 0 to (k-1) (i.e. Base (or radix) k), and we use CountingSort in (2), then RadixSort runs in time

\[O(d(n+k)) \]

if \(d = O(1) \) and \(k = O(n) \), this is \(O(n) \).

BucketSort

This algorithm assumes that the array elements are uniformly distributed over the interval \([0, 1)\).
we divide \((0,1)\) into \(n\) subintervals of equal size:
\[
\left[0, \frac{1}{n}\right), \left[\frac{1}{n}, \frac{2}{n}\right), \ldots, \left[\frac{n-1}{n}, 1\right)
\]

The uniform distribution assumption implies that each subinterval contains, on average, 1 array element.

BucketSort uses an array \(B[1 \ldots n]\) of linked lists (i.e. Buckets.) Its output is a single list obtained by concatenating \(B[1], \ldots, B[n]\).

BucketSort \((A)\)
\(\text{(Pre: All elements uniformly dist. over } [0,1])\)
1. \(n \leftarrow \text{length}[A]\)
2. \(\text{for } i \leftarrow 1 \text{ to } n\)
3. \(\text{insert } A[i] \text{ into list } B[\lfloor nA[i] \rfloor + 1]\)
4. \(\text{for } i \leftarrow 1 \text{ to } n\)
5. \(\text{sort list } B[i] \text{ using InsertionSort}\)
6. \(\text{concatenate lists } B[1], \ldots, B[n]\)
7. \(\text{return new list.}\)