1. Design a program for finding a solution to the Jumping Pegs Problem via Backtracking
2. Use Hashing to avoid solving the same board a second time.

Rules of the problem

- | denotes a peg
- X denotes a double peg
- A peg | must jump over 2 pegs (over | or over X) and land on a peg

```
|   | | --|--->   | | X
^   ^
| X | --|---> X X
^   ^
```

- A peg can jump either left or right
- Double pegs can’t move and spaces are ignored
- Cant land on an empty spot or double peg.

Input: Start configuration of single and double pegs
Question: Is there a sequence of jumps s.t. all pegs are doubled?
- If not then output “no solution”.
- If yes then output a sequence of boards or moves shows how the solution was achieved.
Begin by:

1. Solving small problems by hand.
 Try to solve the following:

 \[\begin{array}{|c|c|c|c|c|c|} \hline
 \vert & \vert & X & \vert & \vert & \vert \\hline
 \vert & \vert & \vert & \vert & \vert & \vert \\hline
 \vert & \vert & \vert & \vert & \vert & \vert \\hline
 \end{array} \rightarrow \text{no solution} \]

2. Write a recursive backtracking routine for solving the problem

Hashing:

1. Represent the “board” as a sequence of bits: 0 encodes | and 1 encodes X.
 When empty spots appear then you need to left shift.

2. Interpret bit sequences as keys represented in binary that you can hash on.

3. Whenever a board is known to have no solution, then hash it.

4. Before recursing on a new board, check whether it is not in your hash table.
 If it is, then you can skip this recursion.

5. You only need to implement Insert and Search but not Delete.

6. Use open addressing. Keep track of your load factor α. If $\alpha > 0.2$, then
 rehash the whole table content into one 4 times as larger. For the initial hash
 table size we suggest to use: $m = 2^{12} = 4096$. You are welcome to vary the
 2, 4, and 2^{12} constants in sensible ways.

7. Start with the division method and linear probing.

8. Once this works, then use double hashing: $h(k, i) = (h_1(k) + ih_2(k)) \mod m$.

 \[\frac{\text{frac}}{:= kA} \mod 1, \ m\text{frac} := m \text{frac}, \ h_1(k) := \lfloor \text{mfrac} \rfloor, \ h_2(k) := \lfloor m(\text{mfrac} \mod 1) \rfloor. \]

9. Finally implement the enlarging your hash table procedure.

10. Input format: A sequence of bits.

Add a short (half page) description of what you observed:
 - For what type/size of inputs did the hash table give an advantage?
 - If you tuned any parameters, what was your rationale?
 - Anything else insightful