CMPS101: Homework #4 Solutions

TA: Krishna (vrk@soe.ucsc.edu)

Due Date: March 5, 2013

12.1-5

Problem

Argue that since sorting n elements takes $\Omega(n \log n)$ time in the worst case in the comparison model, any comparison-based algorithm for constructing a binary search tree from an arbitrary list of n elements takes $\Omega(n \log n)$ time in the worst case.

Solution

The value of the nodes in the tree can be printed in sorted order in $O(n)$ time using an inorder traversal of the tree. Thus any algorithm that builds a binary tree can be used to solve a sorting problem. Now if it were possible to devise an algorithm that can construct a binary tree with a worst case time bound better than $\Omega(n \log n)$, then we would have a sorting algorithm that has better bound than $\Omega(n \log n)$. Since binary tree construction also uses key comparisons, the $\Omega(n \log n)$ bounds must apply to such an algorithm too. The existence of such an algorithm for constructing a binary tree in $o(n \log n)$ time would thus contradict the lower bound for sorting.

12.2-4

Problem

Professor Bunyan thinks he has discovered a remarkable property of binary search trees. Suppose that the search for key k in a binary search tree ends up in a leaf. Consider three sets: A, the keys to the left of the search path; B, the keys on the search path; and C, the keys to the right of the search path. Professor Bunyan claims that any three keys $a \in A, b \in B,$ and $c \in C$ must satisfy $a \leq b \leq c$. Give a smallest possible counterexample to the professors claim.
Solution

The claim is wrong. A simple counter example is shown in figure 1. In the figure, the search is being done for leaf node 3, so the set $B = \{8, 4, 3\}$. There is nothing to the left of the path and so set $A = \{\phi\}$. Set C is all elements to the right of the path, so set $C = \{6\}$. For any element $a \in A$, and $b \in B$ the claim is true, since A is an empty set. But if set $b = 8$ and $c = 6$, the claim fails to hold.

12.3-3

Problem

We can sort a given set of n numbers by first building a binary search tree containing these numbers (using TREE-INSERT repeatedly to insert the numbers one by one) and then printing the numbers by an inorder tree walk. What are the worst-case and best-case running times for this sorting algorithm?

Solution

Tree-Sort(A)
 // let T be an empty binary search tree
 for i <- 1 to n
 do Tree-Insert(T, A[i])
 Inorder-Tree-Walk(root[T])

Worst case of $\Theta(n^2)$ occurs when a linear chain of nodes results from the repeated insert operations. It can be easily verified that this follows from the
following recurrence. $T(n) = T(n - 1) + cn$, i.e., to insert n nodes, the cost is $T(n - 1)$ (the cost of inserting n-1 nodes) and the cost of inserting the n^{th} node. Solving this recurrence, we get the $\Theta(n^2)$ as runtime cost.

Best case of $\Theta(n \log n)$ occurs when a binary tree of height $\Theta(\log n)$ results from the insert operations. When inserting n^{th} node, we are inserting it into a tree with height $\log(n)$ since the tree is perfectly balanced. Thus the runtime cost is $\sum_{i=1}^{n}(\log i + d) = \Theta(n \log n)$.

12.3-4

Problem

Is the operation of deletion commutative in the sense that deleting x and then y from a binary search tree leaves the same tree as deleting y and then x? Argue why it is or give a counterexample.

Solution

The deletion is not a commutative operation. A counter example is shown in the figure 2.

Figure 2: Example demonstrating that bst delete operation is not commutative.
13.1-6

Problem

What is the largest possible number of internal nodes in a red-black tree with black-height k? What is the smallest possible number?

Solution

Note that the black height $bh(x)$ is defined as number of black nodes on any path from node x to a leaf, not including x.

The smallest possible number of internal nodes is $2^k - 1$, which occurs when every node is black. This is produced by a complete binary tree with k levels with all nodes black. This tree has 1 root at level 0, 2 internal nodes at level 1 so on. Adding up we get, total internal nodes = $\sum_{i=0}^{k} 2^i = 2^k - 1$.

The largest possible number of internal nodes is $2^{2k} - 1$ which occurs when every other node in each path is a black node. This is produced by a complete binary tree which has alternating levels of black and red nodes. Since the black height is k, the height of the tree is $2k$. Using similar calculations as before, we find that total number of internals nodes is $2^{2k} - 1$.

13.3-2

Problem

Show the red-black trees that result after successively inserting the keys 41; 38; 31; 12; 19; 8 into an initially empty red-black tree.

Solution

The resulting red-black trees are shown in the figure 3.

14.2-5

Problem

Given an element x in an n-node order-statistic tree and a natural number i, how can we determine the ith successor of x in the linear order of the tree in $O(\log n)$ time?

Solution

This can be done easily using the OS-RANK() and OS-SELECT() methods given in the text.
Figure 3: red-black trees that result after successively inserting the keys 41; 38; 31; 12; 19; 8
SUCCESSOR(T, x, i) {
 rank = OS-RANK(T, x);
 srank = rank + i;
 Node t = OS-SELECT(T.root, s);
 return t;
}

Since OS-RANK() and OS-SELECT() both have $O(lg n)$ runtimes, SUCCESSOR() also takes $O(lg n)$.