1 8.3-4

Problem
Show how to sort n integers in the range 0 to $n^3 - 1$ in $O(n)$ time.

Solution
The solution is easily obtained by considering numbers to the base n. Note that in a general base-k number system, numbers in the range 0 to $R - 1$ can be represented using $d = \lceil \log_k(R) \rceil$ digits. Now if we set $k = n$ and $R = n^3$, we see that we can represent n^3 numbers using $d = \log_n(n^3) = 3$ digits only. The numbers can be represented in this n-base system by solving for a, b in $x = a \cdot n^2 + b \cdot n^1 + c \cdot n^0$, where $0 \leq a, b, c \leq n - 1$ and the number in n-base system is (abc). For example, the (largest) number $n^3 - 1$ can be written as

$$(n - 1) \cdot n^2 + (n - 1) \cdot n + n - 1 = (n - 1) \frac{n^3 - 1}{n - 1}$$

and thus in n-base system the representation is $(n - 1 n - 1 n - 1)$.

We can now apply RadixSort to the converted 3-digit base n numbers in $\Theta(d(n + k)) = \Theta(3(n + n)) = \Theta(n)$ time.

For general base k, the conversion into base k numbers involves iterative mod k operations (essentially division by k). This is expensive. However when k is a power of 2 ($k = 2^r$) and your original number is given to you in binary then the conversion comes essentially for free: the i-last digit is the number represented by the i-last block of r bits.

This trick is known to you from converting binary numbers into base 16 (a.k.a. Hexadecimal) numbers. In that case blocks of 4 bits form the base 16 digits 0123456789ABCDEF.

\footnote{We used the geometric sum formula.}
Problem

We wish to implement a dictionary by using direct addressing on a huge array. At the start, the array entries may contain garbage, and initializing the entire array is impractical because of its size. Describe a scheme for implementing a direct-address dictionary on a huge array. Each stored object should use $O(1)$ space; the operations SEARCH, INSERT, and DELETE should take $O(1)$ time each; and initializing the data structure should take $O(1)$ time. (Hint: Use an additional array, treated somewhat like a stack whose size is the number of keys actually stored in the dictionary, to help determine whether a given entry in the huge array is valid or not.)

Solution

We use a huge array T and an verifier array V together. While the array V could grow up to maximum size of array T, the size changes dynamically as keys are added/deleted. When array T is allocated, no attempt is made to initialize the entries. Instead we use the verifier array V to verify the entries in T as follows.

Let n_V be the number of elements in array V, (which is same as number of keys in T). Let the first entry be at index 1. When adding a new object x with key k_{new} to T, we add a reference to the object to V, at index $j = n_V + 1$. Then we add the object x to the array T at location $x\cdot\text{key}$, i.e., $T[x\cdot\text{key}] = x$ and $x\cdot\text{verifier} = j$. Note that we assume existence of a field verifier in object x. It is important to check that entry in T and the corresponding entry in verifier V, reference each other and this cycle of reference provides us with required verification we need. When this verification is successful, we know we are dealing with a legitimate entry.

When we lookup an object with key k, we check for this verification ($T[k] = x$, $x\cdot\text{verifier} = j$ and $V[j] = x$ with $x\cdot\text{key} = k$) and only when the verification is successful, we obtain the object.

Deletion, of key k for example, is a bit tricky. We need to perform three tasks. First is to break the verification cycle. This is pretty trivial, We just need to set the $T[k] = 0$. However the entry j correponding to key k in V is still there. We cant just set the value to 0, as it would leave an empty space in V. We fix this problem by exchanging this entry with the last entry, i.e., exchange $V[j]$ with $V[n_V]$. Finally we need to fix the verification cycle for the object we just moved into index j. Note that all this is constant time effort.

The three key operations of a dictionary are implemented as follows.

```java
// insert object x, with key x.key into the dictionary T
Insert(T, x) {
    n_V = n_V + 1
    // adding the up reference to the array T
    V[n_V] = ptr to x
    T[x.key] = x
```
/* add a down reference to the verifier. we assume a field in object x */
x.verifer = n_V
}

// return the object corresponding to the key k. If none found return null.
Search(T, k) {
 x = T[k]
 j = x.verifer
 if (j < 1 or j > n_V)
 return null
 obj = V[j]
 // verify that verifier points to the same object
 if (obj.key == k)
 return obj
 else
 return null
}

// delete the key 'k' from dictionary T
Delete(T, k) {
 x = T[k]
 // reset the entry in T
 T[k] = 0
 last = n_V
 lastObj = T[last]
 // delete the entry in V..
 exchange V[j] <--> V[last]
 n_V = n_V - 1
 // fix the verifier for the lastObj
 lastObj.verifier = j
}

9.2-3

Problem
Write an iterative version of RANDOMIZED-SELECT().

Solution
// The goal is to return the ith smallest element, 1<= i <= n in the array A.
// begin is the starting index of the sub array that we currently are considering
// end is last index of the sub array.
// i is the rank of the element we are looking for in the sub array A[begin..end]
RANDOMIZED-SELECT(A, i) {
begin = 1
end = A.size
// they are two conditions for the loop to terminate.
// 1. when the desired element is the pivot. (i == k)
// 2. when the array has size 1. begin == end.
while (begin < end) {
 q = RANDOMIZED-PARTITION(A, begin, end)
 k = q - begin + 1
 if (i == k)
 return A[q]
 else if (i < k)
 end = q-1
 else
 begin = q+1
 i = i - k
}

// control comes here only if begin == end.
return A[begin]

11.3.-4

Problem
Consider a hash table of size m = 1000 and a corresponding hash function h(k) = \lfloor(m(kA \mod 1)) \rfloor for \(A = \frac{\sqrt{5} - 1}{2} \). Compute the locations to which the keys 61, 62, 63, 64, and 65 are mapped.

Solution
We are given that \(A = \frac{\sqrt{5} - 1}{2} \approx 0.618 \).

For k = 61. \(kA \mod 1 = 61 \times 0.618 \mod 1 = 37.698 \mod 1 = 0.698 \).
Note that \(kA \mod 1 \) means we take the fractional part of \(kA \). h(61) = \lfloor (m(kA \mod 1)) \rfloor = \lfloor 1000 \times 0.698 \rfloor = 698. \) Thus we have T[61] = 698.

For k = 62. \(kA \mod 1 = 62 \times 0.618 \mod 1 = 0.316 \). So h(62) = \lfloor 1000 \times 0.316 \rfloor = 316. So T(62) = 316.

For k = 63. \(63 \times 0.618 \mod 1 = 0.934 \). So T(63) = 934.

For k = 64. \(64 \times 0.618 \mod 1 = 0.552 \). So T(64) = 552.

For k = 65. \(65 \times 0.618 \mod 1 = 0.17 \). So T(65) = 170.

Notice how consecutive input numbers are spread across the table.
11.4-1

Problem

Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of length $m = 11$ using open addressing with the auxiliary hash function $h'(k) = k$. Illustrate the result of inserting these keys using linear probing, using quadratic probing with $c_1 = 1$ and $c_2 = 3$, and using double hashing with $h_1(k) = k$ and $h_2(k) = 1 + (k \mod (m - 1))$.

Solution

With linear probing, we use the hash function $h(k, i) = (h'(k) + i) \mod m = (k + i) \mod m$.

- $h(10, 0) = (10 + 0) \mod 11 = 10$. Thus we have $T[10] = 10$.
- $h(22, 0) = (22 + 0) \mod 11 = 0$. Thus we have $T[0] = 22$.
- $h(31, 0) = (31 + 0) \mod 11 = 9$. Thus $T[9] = 31$.
- $h(4, 0) = (4 + 0) \mod 11 = 4$. Thus $T[4] = 4$.
- $h(15, 0) = (15 + 0) \mod 11 = 4$. Since $T[4]$ is occupied, we probe again, $h(15, 1) = 5$. Thus $T[5] = 15$.
- $h(28, 0) = (28 + 0) \mod 11 = 6$. Thus $T[6] = 28$.
- $h(17, 0) = (17 + 0) \mod 11 = 6$. Since $T[6]$ is occupied, we probe again. $h(17, 1) = 7$. Thus $T[7] = 17$.
- $h(88, 0) = (88 + 0) \mod 11 = 0$. $T[0]$ is occupied, so probe again. $h(88, 1) = 1$. Thus $T[1] = 88$.
- $h(59, 0) = (59 + 0) \mod 11 = 4$. $T[4]$ is occupied. $h(59, 1) = 5, h(59, 2) = 6, h(59, 3) = 7$ are all occupied. Probing the fourth time, $h(59, 4) = 8$ works. Thus $T[8] = 59$.

The final hash table is as shown in figure 1a.

With quadratic hashing, we use the hash function $h(k, i) = (h'(k) + i + 3i^2) \mod m = (k + i + 3i^2) \mod m$.

- $h(10, 0) = (10 + 0 + 0) \mod 11 = 10$. Thus we have $T[10] = 10$.
- $h(22, 0) = (22 + 0 + 0) \mod 11 = 0$. Thus we have $T[0] = 22$.
- $h(31, 0) = (31 + 0 + 0) \mod 11 = 9$. Thus $T[9] = 31$.
- $h(4, 0) = (4 + 0 + 0) \mod 11 = 4$. Thus $T[4] = 4$.
- $h(15, 0) = (15 + 0 + 0) \mod 11 = 4$. Since $T[4]$ is occupied, we probe again, $h(15, 1) = (15 + 1 + 3) \mod 11 = 8$. Thus $T[8] = 15$.

5
Figure 1: (a) Hash table using linear probe, with hash function $h(k, i) = (k + i) \ mod \ m$. (b) Hash table using quadratic probe, with hash function $h(k, i) = (k + i + 3i^2) \ mod \ m$. (c) Hash table using double hashing, with hash function $h(k, i) = (k + i + 3i^2) \ mod \ m$.
\[h(28, 0) = (28 + 0 + 0) \mod 11 = 6. \text{ Thus } T[6] = 28. \]

\[h(17, 0) = (17 + 0 + 0) \mod 11 = 6. \text{ Since } T[6] \text{ is occupied, we probe again. } h(17, 1) = 10. \text{ We probe again as } T[10] \text{ is occupied. Similarly } h(17, 2) = 9 \text{ does not work. Finally the insert succeeds with } h(17, 3) = 3. \text{ Thus } T[3] = 17. \]

\[h(88, 0) = (88 + 0 + 0) \mod 11 = 0. \text{ T[0] is occupied, so probe again. } h(88, 1) = 4, h(88, 2) = 3, h(88, 3) = 8, h(88, 4) = 8, h(88, 5) = 3, h(88, 6) = 4, h(88, 7) = 0 \text{ do not work. We finally succeed with } h(88, 8) = 2. \text{ Thus } T[2] = 88. \]

\[h(59, 0) = (59 + 0 + 0) \mod 11 = 4. \text{ T[4] is occupied. We probe again. } h(59, 1) = 7. \text{ Thus } T[7] = 59. \]

The final hash table is as shown in figure 1b.

With double hashing, we use the hash function \(h(k, i) = (h_1(k) + ih_2(k)) \mod m = (k + \{1 + k \mod (m - 1)\}) \mod m. \)

\[h(10, 0) = (10 + 0 \cdot h_2(10)) \mod 11 = 10. \text{ Thus we have } T[10] = 10. \]

\[h(22, 0) = (22 + 0 \cdot h_2(22)) \mod 11 = 0. \text{ Thus we have } T[0] = 22. \]

\[h(31, 0) = (31 + 0 \cdot h_2(31)) \mod 11 = 9. \text{ Thus } T[9] = 31. \]

\[h(4, 0) = (4 + 0 \cdot h_2(4)) \mod 11 = 4. \text{ Thus } T[4] = 4. \]

\[h(15, 0) = (15 + 0 \cdot h_2(15)) \mod 11 = 4. \text{ Since } T[4] \text{ is occupied, we probe again. } h(15, 1) = (15 + 1 \cdot h_2(15)) \mod 11 = (15 + (15 \mod 10)) = 10. \text{ Since } T[10] \text{ is occupied we probe again. } h(15, 2) = 5. \text{ Thus } T[5] = 15. \]

\[h(28, 0) = (28 + 0 \cdot h_2(28)) \mod 11 = 6. \text{ Thus } T[6] = 28. \]

\[h(17, 0) = (17 + 0 \cdot h_2(17)) \mod 11 = 6. \text{ Since } T[6] \text{ is occupied, we probe again. } h(17, 1) = 3. \text{ Thus } T[3] = 17. \]

\[h(88, 0) = (88 + 0 \cdot h_2(88)) \mod 11 = 0. \text{ T[0] is occupied, so probe again. } h(88, 1) = 9 \text{ which is occupied. } h(88, 2) = 7. \text{ Thus } T[7] = 88. \]

\[h(59, 0) = (59 + 0 \cdot h_2(59)) \mod 11 = 4. \text{ T[4] is occupied. We probe again. } h(59, 1) = 3 \text{ does not work. } h(59, 2) = 2. \text{ Thus } T[2] = 59. \]

The final hash table is as shown in figure 1c.

11.4-2

Problem

Write pseudocode for HASH-DELETE as outlined in the text, and modify HASH-INSERT to handle the special value DELETED.
Solution

HASH-DELETE(T, k)

i = 0

repeat
 j = h(k, i)
 if (T[j] == k)
 T[j] = DELETED
 return
 i = i + 1
until T[j] == NIL or i == m

return

Note that the Deletion code cannot simply mark a slot as empty by storing NIL in it. If we did so, key retrieval will fail for any key k for which insertion code found the slot occupied and probed beyond it. This issue is solved by marking the slot with a special DELETED value. Inserts can treat such slots as empty, while search simply skips this slot.

The Hash-Insert() code that handles this modified case is as follows.

HASH-INSERT(T, k)

i = 0

repeat
 j = h(k, i)
 if (T[j] == NIL or T[j] == DELETED)
 T[j] = k
 return j
 else i = i + 1
until i == m

error "hash table overflow"