1. Let $G = (V, E)$ be a graph with n vertices, m edges, and k connected components.
 a. Show that if G is connected and acyclic, then $m = n - 1$. Use induction on either m or n.
 b. Show that if G is acyclic, then $m = n - k$. Use part (a).
 c. Show that if G is connected, then $m \geq n - 1$. Use induction on m.
 d. Show that in any graph G, $m \geq n - k$. Use part (c).

2. Let G be a digraph. Determine whether, at any point during a Depth First Search of G, there can exist an edge of the following kind.
 a. A tree edge that joins a white vertex to a gray vertex.
 b. A back edge that joins a black vertex to a white vertex.
 c. A forward edge that joins a gray vertex to a black vertex.
 d. A cross edge that joins a black vertex to a gray vertex.
 e. A tree edge that joins a gray vertex to a gray vertex.
 f. A forward edge that joins a black vertex to a black vertex.
 g. A cross edge that joins a white vertex to a black vertex.
 h. A back edge that joins a gray vertex to a white vertex.

3. a. State the parenthesis theorem.
 b. State the white path theorem.
 c. State the max-Heap property.
 d. State the min-Heap property.

4. Let G be a directed graph. Prove that if G contains a directed cycle, then DFS(G) produces a back edge. (Hint: use the white path theorem.)

5. Let T be a binary tree. Let $n(T)$ denote the number of nodes in T, and $h(T)$ denote the height of T. Show that $h(T) \geq \lceil \lg(n(T)) \rceil$. (Hint: You may use the following fact without proof. For any positive integer k, \(\lfloor \lg(2k + 1) \rfloor = \lfloor \lg(2k) \rfloor \).)

6. Re-write the algorithms Heapify, and HeapIncreaseKey from the point of view of a min-Heap, rather than a max-Heap. (In particular, HeapIncreaseKey should be renamed HeapDecreaseKey.)

7. Trace HeapSort on the following arrays. Show the state of both the array and ACBT after each swap.
 a. $(9, 3, 5, 4, 8, 2, 5, 10, 12, 2, 7, 4)$
 b. $(5, 3, 7, 1, 10, 12, 19, 24, 5, 7, 2, 6)$
 c. $(9, 8, 7, 6, 5, 4, 3, 2, 1)$

8. Let G be a directed graph, and let $s, x \in V(G)$. Suppose that after Initialize(G, s) is executed, some sequence of calls to Relax($,)$ results in $d[x]$ becoming finite. Show that G contains an s-x path of weight $d[x]$. (Use strong induction on the number of calls to Relax($,)$.)

9. Let G be a directed graph, $s, x \in V(G)$, and suppose Initialize(G, s) is executed. Show that the inequality $\delta(s, x) \leq d[x]$ is maintained over any sequence of calls to Relax($,)$. (Use the result of problem 8.)
10. Perform Dijkstra\((G, s)\) on the weighted digraph below. Trace the d[] and p[] values for each vertex after each call to Relax(,), and draw the resulting Shortest Paths tree.
 a. Use \(s = 1\) as source vertex.
 b. Use \(s = 5\) as source vertex.

 ![Graph Diagram]

11. Let \(G\) be a weighted connected graph (undirected) with distinct edge weights. Show that \(G\) contains a unique minimum weight spanning tree.

12. The following weighted graph contains three minimum weight spanning trees. Run the MWST algorithm of Kruskal on this graph to find two MWSTs. Find a third MWST by inspection.

 ![Graph Diagram]
13. Draw the Binary Search Tree resulting from inserting the keys: 5 8 3 4 6 1 9 2 7 (in that order) into an initially empty tree. Write pseudo-code for the following recursive algorithms, and write their output when run on this tree.
 a. InOrderTreeWalk()
 b. PreOrderTreeWalk()
 c. PostOrderTreeWalk()

14. State the Red-Black Tree Properties, then assign colors to the nodes in the above BST in such a way that it becomes a valid RBT. Note there is more than one way to do this. Find all such color assignments.

15. Let x be a node in a Red-Black Tree, and let $N(x)$ denote the number of internal nodes in the subtree rooted at x. Show that $N(x) \geq 2^{bh(x)} - 1$. (Hint: use strong induction on $height(x)$.)

16. Let T be a Red-Black Tree having n internal nodes, and height h. Show that $h \leq 2 \log (n + 1)$. (Hint: use the result of the previous problem and RBT property (4).)

17. Insert the following keys (in order) into an initially empty Binary Search Tree: 11, 2, 13, 1, 3, 12, 4, 9, 7, 10, 6, 8, 5. Draw the resulting Binary Search Tree. Prove that it is not possible to assign colors Red and Black to the nodes of this tree in such a way that the Red-Black tree properties are satisfied. (Hint: use contradiction and the result of problem 16.)