CMPS 101
Algorithms and Abstract Data Types
Summer 2017 (June 26 – August 18)

Description: Studies basic algorithms and their relationships to common abstract data types. Covers the notions of abstract data types and the distinction between an abstract data type and an implementation of that data type. The complexity analysis of common algorithms using asymptotic (big O) notation is emphasized. Topics include sorting and searching techniques, basic graph algorithms, and algorithm design techniques. Abstract data types covered include priority queues, dictionaries, disjoint sets, heaps, balanced trees, and hashing. Familiarity with C, Java, and Unix is assumed.

Prerequisites: CMPS 12B or 13H; and CMPE 16 or 16H; and MATH 19B; and one course from the following: MATH 21, 22, 23A, 24 or AMS 27.

Time and Place: MWF 1:00 – 2:45 pm Earth & Marine B206
Class Webpage: https://classes.soe.ucsc.edu/cmps101/Summer17/

Instructor: Patrick Tantalo http://users.soe.ucsc.edu/~ptantalo/
Office: E2 255
Office Hours: TTh 2:30-4:00pm, W 3:30-6:30pm, or by appointment
Email: ptantalo@soe.ucsc.edu
Phone: 831-459-3898

Teaching Assistants:
Fatemeh Mirzaei fmirzaei@ucsc.edu
Ankit Gupta agupta29@ucsc.edu

LSS Tutor:
Sushmita Sen susen@ucsc.edu

Required Text: Introduction to Algorithms (2nd or 3rd edition) by Cormen, Leiserson, Rivest and Stein (CLRS). McGraw-Hill 2001 (ISBN 9780262033848). The following reading schedule is a rough guide to what we will discuss and when. Section numbers are from the 3rd edition. I expect that the material from appendices A.1-A.2, B.1-B.3, and C.1-C.2 is already familiar.

<table>
<thead>
<tr>
<th>Week</th>
<th>Sections</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1-1.2, handouts</td>
<td>ADTs, Analysis of Algorithms</td>
</tr>
<tr>
<td>2</td>
<td>2.1-2.3, 3.1-3.2, handouts</td>
<td>Asymptotic Growth Rates</td>
</tr>
<tr>
<td>3</td>
<td>4.3-4.5, handouts</td>
<td>Recurrences, Induction Proofs</td>
</tr>
<tr>
<td>4</td>
<td>B4-B5, 22.1-22.5</td>
<td>Graphs, Trees, Graph Algorithms, BFS, DFS</td>
</tr>
<tr>
<td>5</td>
<td>6.1-6.5, 21.1-21.3</td>
<td>Heaps, Priority Queues, Disjoint Sets</td>
</tr>
<tr>
<td>6</td>
<td>23.1-23.2, 24.1, 24.3</td>
<td>Minimum Weight Spanning Trees, SSSP Problem</td>
</tr>
<tr>
<td>8</td>
<td>7.1-7.4, 8.1-8.4</td>
<td>Sorting Algorithms</td>
</tr>
</tbody>
</table>

Coursework:
- Homework will consist of written exercises from CLRS, and is due at beginning of class on Wednesdays beginning Wednesday July 5.
- Programming Assignments will be due at roughly 10 day intervals.
- Midterm Exam 1 will be held Friday July 14
- Midterm Exam 2 will be held Friday August 4
- Final Exam will be held Friday August 18, 1:00 – 3:00 pm
Coursework will be weighted as follows:

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written Homework</td>
<td>5%</td>
</tr>
<tr>
<td>Programming Assignments</td>
<td>25%</td>
</tr>
<tr>
<td>Midterm Exam 1</td>
<td>10%</td>
</tr>
<tr>
<td>Midterm Exam 2</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>40%</td>
</tr>
</tbody>
</table>

Grading scale:

- A+ 97.0%-100%
- A 93.0%-96.9%
- A- 90.0%-92.9%
- B+ 87.0%-89.9%
- B 83.0%-86.9%
- B- 80.0%-82.9%
- C+ 76.0%-79.9%
- C 70.0%-75.9%
- C- 67.0%-69.9%
- D+ 64.0%-66.9%
- D 61.0%-63.9%
- D- 58.0%-60.9%
- F 0%-57.9%

Letter grade boundaries may be lowered at my discretion in order to eliminate some borderline cases.

Accommodations for Students with Disabilities

If you qualify for classroom accommodations because of a disability, please get an Accommodation Authorization from the Disability Resource Center (DRC) and submit it to me in person outside of class (i.e. during office hours) within the first two weeks of the quarter. Contact DRC at 459-2089 (voice), 459-4806 (TTY), or http://drc.ucsc.edu for more information.

Academic Honesty:

The Baskin School of Engineering has a zero tolerance policy for any incident of academic dishonesty. If cheating occurs, consequences may range from getting zero on a particular assignment to failing the course. In addition every case of academic dishonesty is referred to the students’ college Provost, who sets in motion an official disciplinary process. Cheating in any part of the course may lead to failing the course, suspension or dismissal from the Baskin School of Engineering, or from UCSC.

What is cheating? In short, it is presenting someone else’s work as your own. Examples would include copying another students’ programming assignment, written homework or exam, or allowing your own work to be copied. You may discuss programs with fellow students, but your collaboration must be at the level of ideas only. You may freely give and receive help with the computer facilities, editors, the UNIX operating system, and the proper use and syntax of the Java and C programming languages; but you may not copy, paste, email, transfer or in any way share source code, or in any way share in the act of writing your solutions. If you do collaborate (legitimately) or receive help from anyone, you must credit them by placing their name(s) at the top of your program or paper. Please see the University's policy on Academic Misconduct at: https://www.ue.ucsc.edu/academic_misconduct.

Some Important Summer Session Deadlines:

- Last day to drop: Monday July 10 (week 3)
- Last day to withdraw: Friday July 28 (week 5)