11.4-1

Problem

Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of length $m = 11$ using open addressing with the auxiliary hash function $h'(k) = k$. Illustrate the result of inserting these keys using linear probing, using quadratic probing with $c_1 = 1$ and $c_2 = 3$, and using double hashing with $h_1(k) = k$ and $h_2(k) = 1 + (k \mod (m - 1))$.

Solution

With linear probing, we use the hash function $h(k, i) = (h'(k) + i) \mod m = (k + i) \mod m$.

$h(10, 0) = (10 + 0) \mod 11 = 10$. Thus we have $T[10] = 10$.

$h(22, 0) = (22 + 0) \mod 11 = 0$. Thus we have $T[0] = 22$.

$h(31, 0) = (31 + 0) \mod 11 = 9$. Thus $T[9] = 31$.

$h(4, 0) = (4 + 0) \mod 11 = 4$. Thus $T[4] = 4$.

$h(15, 0) = (15 + 0) \mod 11 = 4$. Since $T[4]$ is occupied, we probe again, $h(15, 1) = 5$. Thus $T[5] = 15$.

$h(28, 0) = (28 + 0) \mod 11 = 6$. Thus $T[6] = 28$.

$h(17, 0) = (17 + 0) \mod 11 = 6$. Since $T[6]$ is occupied, we probe again. $h(17, 1) = 7$. Thus $T[7] = 17$.

$h(88, 0) = (88 + 0) \mod 11 = 0$. $T[0]$ is occupied, so probe again. $h(88, 1) = 1$. Thus $T[1] = 88$.

$h(59, 0) = (59 + 0) \mod 11 = 4$. $T[4]$ is occupied. $h(59, 1) = 5$, $h(59, 2) = 6$, $h(59, 3) = 7$ are all occupied. Probing the fourth time, $h(59, 4) = 8$ works. Thus $T[8] = 59$.

Figure 1: (a) Hash table using linear probe, with hash function $h(k, i) = (k + i) \mod m$. (b) Hash table using quadratic probe, with hash function $h(k, i) = (k + i + 3i^2) \mod m$. (c) Hash table using double hashing, with hash function $h(k, i) = (k + i + 3i^2) \mod m$.
The final hash table is as shown in figure 1a.

With quadratic hashing, we use the hash function \(h(k, i) = (h'(k) + i + 3i^2) \mod m \).

\(h(10, 0) = (10 + 0 + 0) \mod 11 = 10 \). Thus we have \(T[10] = 10 \).

\(h(22, 0) = (22 + 0 + 0) \mod 11 = 0 \). Thus we have \(T[0] = 22 \).

\(h(31, 0) = (31 + 0 + 0) \mod 11 = 9 \). Thus \(T[9] = 31 \).

\(h(4, 0) = (4 + 0 + 0) \mod 11 = 4 \). Thus \(T[4] = 4 \).

\(h(15, 0) = (15 + 0 + 0) \mod 11 = 4 \). Since \(T[4] \) is occupied, we probe again, \(h(15,1) = (15 + 1 + 3) \mod 11 = 8 \). Thus \(T[8] = 15 \).

\(h(28, 0) = (28 + 0 + 0) \mod 11 = 6 \). Thus \(T[6] = 28 \).

\(h(17, 0) = (17 + 0 + 0) \mod 11 = 6 \). Since \(T[6] \) is occupied, we probe again. \(h(17, 1) = 10 \). Thus \(T[10] = 17 \).

\(h(88, 0) = (88 + 0 + 0) \mod 11 = 0 \). \(T[0] \) is occupied, so probe again. \(h(88,1) = 4 \), \(h(88,2) = 3 \), \(h(88,3) = 8 \), \(h(88,4) = 8 \), \(h(88,5) = 3 \), \(h(88,6) = 4 \), \(h(88,7) = 0 \) do not work. We finally succeed with \(h(88,8) = 2 \). Thus \(T[2] = 88 \).

\(h(59, 0) = (59 + 0 + 0) \mod 11 = 4 \). \(T[4] \) is occupied. We probe again. \(h(59,1) = 7 \). Thus \(T[7] = 59 \).

The final hash table is as shown in figure 1b.

With double hashing, we use the hash function \(h(k, i) = (h_1(k) + ih_2(k)) \mod m = (k + \{1 + k \mod (m − 1)\}) \mod m \).

\(h(10, 0) = (10 + 0.h_2(10)) \mod 11 = 10 \). Thus we have \(T[10] = 10 \).

\(h(22, 0) = (22 + 0.h_2(22)) \mod 11 = 0 \). Thus we have \(T[0] = 22 \).

\(h(31, 0) = (31 + 0.h_2(31)) \mod 11 = 9 \). Thus \(T[9] = 31 \).

\(h(4, 0) = (4 + 0.h_2(4)) \mod 11 = 4 \). Thus \(T[4] = 4 \).

\(h(15, 0) = (15 + 0.h_2(15)) \mod 11 = 4 \). Since \(T[4] \) is occupied, we probe again, \(h(15,1) = (15 + 1.h_2(15)) \mod 11 = (15 + (15 \mod 10)) \mod 11 = 10 \). Since \(T[10] \) is occupied we probe again. \(h(15,2) = 5 \). Thus \(T[5] = 15 \).

\(h(28, 0) = (28 + 0.h_2(28)) \mod 11 = 6 \). Thus \(T[6] = 28 \).

\(h(17, 0) = (17 + 0.h_2(17)) \mod 11 = 6 \). Since \(T[6] \) is occupied, we probe again. \(h(17, 1) = 3 \). Thus \(T[3] = 17 \).

\(h(88, 0) = (88 + 0.h_2(88)) \mod 11 = 0 \). \(T[0] \) is occupied, so probe again. \(h(88,1) = 9 \) which is occupied. \(h(88,2) = 7 \). Thus \(T[7] = 88 \).
\(h(59,0) = (59 + 0 \cdot h_2(59)) \mod 11 = 4 \). T[4] is occupied. We probe again. \(h(59,1) = 3 \) does not work. \(h(59,2) = 2 \). Thus \(T[2] = 59 \).

The final hash table is as shown in figure 1c.

11.4-2

Problem

Write pseudocode for HASH-DELETE as outlined in the text, and modify HASH-INSERT to handle the special value DELETED.

Solution

HASH-DELETE(T,k)

\[
\text{i} = 0 \\
\text{repeat} \\
\quad j = h(k, i) \\
\quad \text{if (} T[j] == k \text{)} \\
\quad \quad T[j] = \text{DELETED} \\
\quad \quad \text{return} \\
\quad i = i + 1 \\
\text{until } T[j] == \text{NIL or } i == m \\
\text{return}
\]

Note that the Deletion code cannot simply mark a slot as empty by storing NIL in it. If we did so, key retrieval will fail for any key \(k \) for which insertion code found the slot occupied and probed beyond it. This issue is solved by marking the slot with a special DELETED value. Inserts can treat such slots as empty, while search simply skips this slot.

The Hash-Insert() code that handles this modified case is as follows.

HASH-INSERT(T, k)

\[
\text{i} = 0 \\
\text{repeat} \\
\quad j = h(k, i) \\
\quad \text{if (} T[j] == \text{NIL or } T[j] == \text{DELETED} \text{)} \\
\quad \quad T[j] = k \\
\quad \quad \text{return } j \\
\quad \text{else } i = i + 1 \\
\text{until } i == m \\
\text{error } "\text{hash table overflow}"
\]
12.1-5

Problem

Argue that since sorting n elements takes $\Omega(n \log n)$ time in the worst case in the comparison model, any comparison-based algorithm for constructing a binary search tree from an arbitrary list of n elements takes $\Omega(n \log n)$ time in the worst case.

Solution

The value of the nodes in the tree can be printed in sorted order in $O(n)$ time using an inorder traversal of the tree. Thus any algorithm that builds a binary tree can be used to solve a sorting problem. Now if it were possible to devise an algorithm that can construct a binary tree with a worst case time bound better than $\Omega(n \log n)$, then we would have a sorting algorithm that has better bound than $\Omega(n \log n)$. Since binary tree construction also uses key comparisons, the $\Omega(n \log n)$ bounds must apply to such an algorithm too. The existence of such an algorithm for constructing a binary tree in $o(n \log n)$ time would thus contradict the lower bound for sorting.

12.2-4

Problem

Professor Bunyan thinks he has discovered a remarkable property of binary search trees. Suppose that the search for key k in a binary search tree ends up in a leaf. Consider three sets: A, the keys to the left of the search path; B, the keys on the search path; and C, the keys to the right of the search path. Professor Bunyan claims that any three keys $a \in A, b \in B$, and $c \in C$ must satisfy $a \leq b \leq c$. Give a smallest possible counterexample to the professors claim.

Solution

The claim is wrong. A simple counter example is shown in figure 2. In the figure, the search is being done for leaf node 3, so the set $B = \{8, 4, 3\}$. There is nothing to the left of the path and so set $A = \{\phi\}$. Set C is all elements to the right of the path, so set $C = \{6\}$. For any element $a \in A$, and $b \in B$ the claim is true, since A is an empty set. But if set $b = 8$ and $c = 6$, the claim fails to hold.
Figure 2: Counter example to Professor Bunyan’s claim. The set A is empty. The search path, where search is performed for the key 3 is marked. The search proceeds from root 8 to the node 4 and then to node 3. So \(B = \{8, 4, 3\} \). Set C is the only key to the right of the path, i.e., \(C = \{6\} \).

12.3-3

Problem

We can sort a given set of \(n \) numbers by first building a binary search tree containing these numbers (using TREE-INSERT repeatedly to insert the numbers one by one) and then printing the numbers by an inorder tree walk. What are the worst-case and best-case running times for this sorting algorithm?

Solution

Tree-Sort(A)

// let T be an empty binary search tree
for i <- 1 to n
 do Tree-Insert(T, A[i])
Inorder-Tree-Walk(root[T])

Worst case of \(\Theta(n^2) \) occurs when a linear chain of nodes results from the repeated insert operations. It can be easily verified that this follows from the following recurrence. \(T(n) = T(n - 1) + cn \), i.e., to insert \(n \) nodes, the cost is \(T(n - 1) \) (the cost of inserting n-1 nodes) and the cost of inserting the \(n^{th} \) node. Solving this recurrence, we get the \(\Theta(n^2) \) as runtime cost.

Best case of \(\Theta(n \log n) \) occurs when a binary tree of height \(\Theta(\log n) \) results from the insert operations. When inserting \(n^{th} \) node, we are inserting it into a tree with height \(\log(n) \) since the tree is perfectly balanced. Thus the runtime cost is \(\sum_{i=1}^{n} (\log i + d) = \Theta(n \log n) \).
12.3-4

Problem
Is the operation of deletion commutative in the sense that deleting x and then y from a binary search tree leaves the same tree as deleting y and then x? Argue why it is or give a counterexample.

Solution
The deletion is not a commutative operation. A counter example is shown in the figure 3.

13.1-6

Problem
What is the largest possible number of internal nodes in a red-black tree with black-height k? What is the smallest possible number?

Solution
Note that the black height $bh(x)$ is defined as number of black nodes on any path from node x to a leaf, not including x.

The smallest possible number of internal nodes is $2^k - 1$, which occurs when every node is black. This is produced by a a complete binary tree with k levels
with all nodes black. This tree has 1 root at level 0, 2 internal nodes at level 1 so on. Adding up we get, total internal nodes = \(\sum_{l=0}^{k} 2^l = 2^k - 1 \).

The largest possible number of internal nodes is \(2^{2k} - 1 \) which occurs when every other node in each path is a black node. This is produced by a complete binary tree which has alternating levels of black and red nodes. Since the black height is \(k \), the height of the tree is \(2k \). Using similar calculations as before, we find that total number of internal nodes is \(2^{2k} - 1 \).